Badia, G.: On Sahlqvist formulas in relevant logic. J. Philos. Log. 47(4), 673–691 (2018)
MathSciNet
CrossRef
Google Scholar
van Benthem, J.: Modal correspondence theory. Ph.D. thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam (1976)
Google Scholar
van Benthem, J.: A note on dynamic arrow logic. Technical report LP-92-11, ILLC, University of Amsterdam (1992)
Google Scholar
van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 3, 2nd edn., pp. 325–408. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-017-0454-0_4
Bimbó, K., Dunn, J.M., Maddux, R.D.: Relevance logics and relation algebras. Rev. Symb. Log. 2(1), 102–131 (2009)
MathSciNet
CrossRef
Google Scholar
Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 933–975. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_36
CrossRef
Google Scholar
Conradie, W., Goranko, V.: Algorithmic correspondence for relevance logics I. The algorithm PEARL. In: Düntsch, I., Mares, E. (eds.) Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs, pp. 163–209. Springer, Heidelberg (2021). https://www2.philosophy.su.se/goranko/papers/PEARL.pdf
Conradie, W., Goranko, V., Jipsen, P.: Algorithmic correspondence for relevance logics, bunched implication logics, and relation algebras: the algorithm PEARL and its implementation (2021). Technical report https://arxiv.org/abs/2108.06603
Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and completeness in modal logic, I. The core algorithm SQEMA. Log. Methods Comput. Sci. 2(1:5), 1–26 (2006)
Google Scholar
Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive modal logic. Ann. Pure Appl. Logic 163(3), 338–376 (2012)
MathSciNet
CrossRef
Google Scholar
Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. Ann. Pure Appl. Logic 170(9), 923–974 (2019). https://doi.org/10.1016/j.apal.2019.04.003
MathSciNet
CrossRef
MATH
Google Scholar
Dahlqvist, F., Pym, D.: Coalgebraic completeness-via-canonicity for distributive substructural logics. J. Log. Algebr. Methods Program. 93, 1–22 (2017). https://doi.org/10.1016/j.jlamp.2017.07.002
MathSciNet
CrossRef
MATH
Google Scholar
de Rijke, M., Venema, Y.: Sahlqvist’s theorem for Boolean algebras with operators with an application to cylindric algebras. Stud. Log. 54(1), 61–78 (1995). https://doi.org/10.1007/BF01058532
MathSciNet
CrossRef
MATH
Google Scholar
Doumane, A., Pous, D.: Non axiomatisability of positive relation algebras with constants, via graph homomorphisms. In: Konnov, I., Kovács, L. (eds.) Proceedings of CONCUR 2020. LIPIcs, vol. 171, pp. 29:1–29:16. Schloss Dagstuhl (2020)
Google Scholar
Dunn, J.M.: Arrows pointing at arrows: arrow logic, relevance logic, and relation algebras. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 881–894. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_34
CrossRef
Google Scholar
Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symb. Logic 70, 713–740 (2005)
MathSciNet
CrossRef
Google Scholar
Dunn, J., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. HALO, vol. 6, 2nd edn., pp. 1–128. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0460-1_1
CrossRef
Google Scholar
Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)
MATH
Google Scholar
Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131, 65–102 (2005)
MathSciNet
CrossRef
Google Scholar
Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Mathematica Scandinavica 94(1), 13–45 (2004)
Google Scholar
Goranko, V., Vakarelov, D.: Sahlqvist formulae in hybrid polyadic modal languages. J. Log. Comput. 11(5), 737–754 (2001)
CrossRef
Google Scholar
Goranko, V., Vakarelov, D.: Sahlqvist formulas unleashed in polyadic modal languages. In: Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp. 221–240. World Scientific, Singapore (2002)
CrossRef
Google Scholar
Goranko, V., Vakarelov, D.: Elementary canonical formulae: extending Sahlqvist’s theorem. Ann. Pure Appl. Logic 141(1–2), 180–217 (2006)
MathSciNet
CrossRef
Google Scholar
Hirsch, R., Mikulás, S.: Positive fragments of relevance logic and algebras of binary relations. Rev. Symb. Log. 4(1), 81–105 (2011)
MathSciNet
CrossRef
Google Scholar
Jónsson, B.: On the canonicity of Sahlqvist identities. Studis Logica 53(4), 473–491 (1994). https://doi.org/10.1007/BF01057646
MathSciNet
CrossRef
MATH
Google Scholar
Kowalski, T.: Relevant logic and relation algebras. In: Galatos, N., Kurz, A., Tsinakis, C. (eds.) TACL 2013. Sixth International Conference on Topology, Algebra and Categories in Logic. EPiC Series in Computing, vol. 25, pp. 125–128 (2014)
Google Scholar
Maddux, R.: Some varieties containing relation algebras. Trans. Am. Math. Soc. 272, 501–526 (1982)
MathSciNet
CrossRef
Google Scholar
Maddux, R.D.: Relevance logic and the calculus of relations. Rev. Symb. Log. 3(1), 41–70 (2010). https://doi.org/10.1017/S1755020309990293
Pratt, V.R.: Top down operator precedence. In: Fischer, P.C., Ullman, J.D. (eds.) Conference Record of the ACM Symposium on Principles of Programming Languages, Boston, Massachusetts, USA, October 1973, pp. 41–51. ACM Press (1973)
Google Scholar
Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications. APLS, vol. 26. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0091-7
CrossRef
MATH
Google Scholar
Routley, R., Meyer, R., Plumwood, V., Brady, R.: Relevant Logics and its Rivals (Volume I). Ridgeview, CA (1982)
Google Scholar
Sahlqvist, H.: Correspondence and completeness in the first and second-order semantics for modal logic. In: Kanger, S. (ed.) Proceedings of the 3rd Scandinavian Logic Symposium, Uppsala 1973, pp. 110–143. Springer, Amsterdam (1975). https://doi.org/10.1016/S0049-237X(08)70728-6
Sambin, G., Vaccaro, V.: A new proof of Sahlqvist’s theorem on modal definability and completeness. J. Symb. Log. 54(3), 992–999 (1989)
MathSciNet
CrossRef
Google Scholar
Seki, T.: A Sahlqvist theorem for relevant modal logics. Stud. Logica. 73(3), 383–411 (2003)
MathSciNet
CrossRef
Google Scholar
Suzuki, T.: Canonicity results of substructural and lattice-based logics. Rev. Symb. Log. 4(1), 1–42 (2011). https://doi.org/10.1017/S1755020310000201
MathSciNet
CrossRef
MATH
Google Scholar
Suzuki, T.: A Sahlqvist theorem for substructural logic. Rev. Symb. Log. 6(2), 229–253 (2013). https://doi.org/10.1017/S1755020313000026
MathSciNet
CrossRef
MATH
Google Scholar
Urquhart, A.: Duality for algebras of relevant logics. Studia Logica 56(1/2), 263–276 (1996). https://doi.org/10.1007/BF00370149