Skip to main content

Unary-Determined Distributive \(\ell \)-magmas and Bunched Implication Algebras

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 13027)

Abstract

A distributive lattice-ordered magma (\(d\ell \)-magma) \((A,\wedge ,\vee ,\cdot )\) is a distributive lattice with a binary operation \(\cdot \) that preserves joins in both arguments, and when \(\cdot \) is associative then \((A,\vee ,\cdot )\) is an idempotent semiring. A \(d\ell \)-magma with a top \(\top \) is unary-determined if \(x{\cdot } y=(x{\cdot }\top \wedge y)\) \(\vee (x\wedge \top {\cdot }y)\). These algebras are term-equivalent to a subvariety of distributive lattices with \(\top \) and two join-preserving unary operations pq. We obtain simple conditions on pq such that \(x{\cdot } y=(px\wedge y)\vee (x\wedge qy)\) is associative, commutative, idempotent and/or has an identity element. This generalizes previous results on the structure of doubly idempotent semirings and, in the case when the distributive lattice is a Heyting algebra, it provides structural insight into unary-determined algebraic models of bunched implication logic. We also provide Kripke semantics for the algebras under consideration, which leads to more efficient algorithms for constructing finite models.

Keywords

  • Distributive lattice-ordered magmas
  • Bunched implication algebras
  • Idempotent semirings
  • Enumerating finite models

This is a preview of subscription content, access via your institution.

Buying options

eBook
EUR   16.99
Price includes VAT (Finland)
  • ISBN: 978-3-030-88701-8
  • Instant EPUB and PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   17.47
Price includes VAT (Finland)
  • ISBN: 978-3-030-88700-1
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    See shipping information.
  • Tax calculation will be finalised during checkout
Fig. 1.
Fig. 2.

References

  1. Alpay, N., Jipsen, P.: Commutative doubly-idempotent semirings determined by chains and by preorder forests. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 1–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2_1

    CrossRef  Google Scholar 

  2. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  3. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge (2002)

    Google Scholar 

  4. Dunn, J., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd ed., vol. 6, pp. 1–128. Springer, Heidelberg (2002)

    Google Scholar 

  5. Galatos, N., Jipsen, P.: The structure of generalized BI-algebras and weakening relation algebras. Algebra Universalis 81(3), 1–35 (2020). https://doi.org/10.1007/s00012-020-00663-9

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  7. Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131, 65–102 (2005)

    CrossRef  MathSciNet  Google Scholar 

  8. Gil-Férez, J., Jipsen, P., Metcalfe, G.: Structure theorems for idempotent residuated lattices. Algebra Universalis 81(2), 1–25 (2020). https://doi.org/10.1007/s00012-020-00659-5

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Hebisch, U., Weinert, H.J.: Semirings: Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)

    CrossRef  Google Scholar 

  10. Maddux, R.: Some varieties containing relation algebras. Trans. Am. Math. Soc. 272(2), 501–526 (1982)

    CrossRef  MathSciNet  Google Scholar 

  11. Kurz, A., Velebil, J.: Relation lifting, a survey. J. Logical Algebraic Methods Program. 85(4), 475–499 (2016)

    CrossRef  MathSciNet  Google Scholar 

  12. McCune, W.: Prover9 and Mace4 (2005–2010). http://cs.unm.edu/~mccune/prover9

  13. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 271–307 (2007)

    CrossRef  MathSciNet  Google Scholar 

  14. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Logic 5(2), 215–244 (1999)

    CrossRef  MathSciNet  Google Scholar 

  15. Raney, G.N.: Completely distributive complete lattices. Proc. Am. Math. Soc. 3, 677–680 (1952)

    CrossRef  MathSciNet  Google Scholar 

  16. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74 (2002)

    Google Scholar 

Download references

Acknowledgments

The investigations in this paper made use of Prover9/ Mace4 [12]. In particular, parts of Lemma 2 and Theorem 11 were developed with the help of Prover9 (short proofs were extracted from the output) and the results in Table 1 were calculated with Mace4. The remaining results in Sections 2–4 were proved manually, and later also checked with Prover9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jipsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alpay, N., Jipsen, P., Sugimoto, M. (2021). Unary-Determined Distributive \(\ell \)-magmas and Bunched Implication Algebras. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science(), vol 13027. Springer, Cham. https://doi.org/10.1007/978-3-030-88701-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88701-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88700-1

  • Online ISBN: 978-3-030-88701-8

  • eBook Packages: Computer ScienceComputer Science (R0)