Abstract
Hyperdoctrines are an algebraization of first-order logic introduced by Lawvere in [11]. In [9], Joyal defines a polyadic space as the Stone dual of a Boolean hyperdoctrine. He also proposed to recover a polyadic space from a simpler core, its Stirling kernel. We generalize this here in order to adapt polyadic spaces to certain classes of first-order theories. We will see how these ideas can be applied to give a correspondence between some first-order theories with a linear order symbol and equidivisible profinite semigroup with open multiplication. The inspiration comes from the paper [6] of van Gool and Steinberg, where model theory is used to study pro-aperiodic monoids.
Keywords
- Categorical logic
- Profinite monoids
- Logic on words
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 670624).
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
More precisely, if there is a binary relational symbol \(\le \) subject to the axioms of partial orders.
- 2.
Trees and forests are considered as special ordered sets for the notion to be first-order.
- 3.
The set \(B \sqcup B \subseteq \mathscr {P}(A^*\times A^*)\) is the Boolean subalgebra generated by sets of the form \(L\times A^*\) and \(A^*\times L\) where \(L \in B\). It is also the coproduct of two copies of B in the category of Boolean algebras.
References
Almeida, J., et al.: The linear nature of pseudowords. In: Publicacions Matemàtiques, vol. 63, pp. 361–422, July 2019. ISSN: 0214-1493. https://doi.org/10.5565/publmat6321901
Borceux, F.: Handbook of Categorical Algebra 1 - Basic Category Theory. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/CBO9780511525858
Doner, J.E., Mostowski, A., Tarski, A.: The elementary theory of well-odering - a metamathematical study. In: Logic Colloquium 1977. Studies in Logic and the Foundations of Mathematics, vol. 96, pp. 1–54. Elsevier (1978). https://doi.org/10.1016/S0049-237X(08)71988-8
Gehrke, M.: Stone duality, topological algebra, and recognition. J. Pure Appl. Algebra 220(7), 2711–2747 (2016)
Gehrke, M., Grigorieff, S., Pin, J.É.: A topological approach to recognition. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 151–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_13
van Gool, S.J., Steinberg, B.: Pro-aperiodic monoids via saturated models. Israel J. Math. 234(1), 451–498 (2019). https://doi.org/10.1007/s11856-019-1947-6
Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997). ISBN: 0521587131
Johnstone, P.: Stone Spaces, vol. xxi, p. 370. Cambridge University Press, Cambridge (1982). ISBN: 0521238935
Joyal, A.: Polyadic spaces and elementary theories. In: Notices of the American Mathematical Society, April 1971
Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press, Cambridge (1986). ISBN: 0521246652
Lawvere, F.W.: Adjointness in foundations. In: Dialectica (1969). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.6900
Marquis, J.-P., Reyes, G.E.: The history of categorical logic: 1963–1977. In: Sets and Extensions in the Twentieth Century. Handbook of the History of Logic, pp. 689–800. Elsevier (2012). https://doi.org/10.1016/B978-0-444-51621-3.50010-4
Pin, J.-E.: Logic on words. In: Current trends in theoretical computer science, pp. 254–273. World Scientific Publishing (2001)
Rasiowa, H., Sikorski, R.: Proof of the completeness theorem of Gödel. In: Fundamenta Mathematicae 37(1), 193–200 (1950). http://eudml.org/doc/213213
Rosenstein, J.G.: Linear Orderings, vol. xvii, p. 487. Academic Press, New York (1981). ISBN: 0125976801
Seely, R.A.G.: Hyperdoctrines, natural deduction and the beck condition. Math. Logic Q. 29(10), 505–542 (1983). https://doi.org/10.1002/malq.19830291005
Acknowledgments
This work has been done under the supervision of Mai Gehrke and André Joyal.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Marquès, J. (2021). Polyadic Spaces and Profinite Monoids. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2021. Lecture Notes in Computer Science(), vol 13027. Springer, Cham. https://doi.org/10.1007/978-3-030-88701-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-88701-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88700-1
Online ISBN: 978-3-030-88701-8
eBook Packages: Computer ScienceComputer Science (R0)