Skip to main content

Ancillary Studies in Urinary Cytology

Abstract

Though cytology and cystoscopy are complementary, together they fail to detect a significant number of patients with UC. In the last two decades, many different assays, or ancillary tests, have been developed to overcome the limitations of urinary cytology and improve the timely detection of UC. No ancillary test has of yet demonstrated sufficient sensitivity/specificity to be useful as a stand-alone screen for UC. The ancillary tests that have recognized utility include UroVysion® Fluorescence in situ Hybridization (U-FISH) (Abbott Laboratories, Abbott Park, IL, USA); BTA™ (Polymedco Inc., Cortlandt Manor, NY, USA); and the NMP22™ (Bladder Check) test (Alere Inc., Waltham, MA, USA). Several other tests for tumor-associated antigens and PCR-based tests for mutations have been proposed, and within the past several years, next-generation sequencing has begun to be applied to detect mutations or epigenetic changes of UC. The most promising ancillary tests are described in this chapter.

Keywords

  • Urothelial carcinoma
  • Atypical urothelial cells
  • Urine cytology
  • Ancillary testing
  • Marker
  • Biomarker
  • FISH
  • UroVysion
  • NMP22
  • BTA
  • Genomic profiling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88686-8_9
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-88686-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5

References

  1. Chang SS, Boorjian SA, Chou R, Clark PE, Daneshmand S, Konety BR, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol. 2016;196(4):1021–9.

    PubMed  Google Scholar 

  2. Babjuk M, Burger M, Comperat EM, Gontero P, Mostafid AH, Palou J, et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ) - 2019 update. Eur Urol. 2019;76(5):639–57.

    CAS  PubMed  Google Scholar 

  3. Barkan GA, Tabatabai ZL, Kurtycz DFI, Padmanabhan V, Souers RJ, Nayar R, et al. Practice patterns in urinary cytopathology prior to the Paris system for reporting urinary cytology. Arch Pathol Lab Med. 2020;144(2):172–6.

    PubMed  Google Scholar 

  4. Kamat AM, Hegarty PK, Gee JR, Clark PE, Svatek RS, Hegarty N, et al. ICUD-EAU international consultation on bladder cancer 2012: screening, diagnosis, and molecular markers. Eur Urol. 2013;63(1):4–15.

    PubMed  Google Scholar 

  5. Soria F, Droller MJ, Lotan Y, Gontero P, D'Andrea D, Gust KM, et al. An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer. World J Urol. 2018;36(12):1981–95.

    PubMed  PubMed Central  Google Scholar 

  6. Yang M, Zheng Z, Zhuang Z, Zhao X, Xu Z, Lin H. ImmunoCyt and cytology for diagnosis of bladder carcinoma: a meta analysis. Chin Med J. 2014;127(4):758–64.

    PubMed  Google Scholar 

  7. Bubendorf L, Piaton E. UroVysion(R) multiprobe FISH in the triage of equivocal urinary cytology cases. Ann Pathol. 2012;32(6):e52–6. 438-43.

    PubMed  Google Scholar 

  8. Halling KC, Kipp BR. Bladder cancer detection using FISH (UroVysion assay). Adv Anat Pathol. 2008;15(5):279–86.

    CAS  PubMed  Google Scholar 

  9. Mischinger J, Guttenberg LP, Hennenlotter J, Gakis G, Aufderklamm S, Rausch S, et al. Comparison of different concepts for interpretation of chromosomal aberrations in urothelial cells detected by fluorescence in situ hybridization. J Cancer Res Clin Oncol. 2017;143(4):677–85.

    CAS  PubMed  Google Scholar 

  10. Marganski WA, El-Sirgany Costa V, Kilpatrick MW, Tafas T, Yim J, Matthews M. Digitized microscopy in the diagnosis of bladder cancer: analysis of >3000 cases during a 7-month period. Cancer Cytopathol. 2011;119(4):279–89.

    PubMed  Google Scholar 

  11. Smith GD, Riding M, Oswald K, Bentz JS. Integrating a FISH imaging system into the cytology laboratory. Cytojournal. 2010;7:3.

    PubMed  PubMed Central  Google Scholar 

  12. Smith GD, Bentz JS. "FISHing" to detect urinary and other cancers: validation of an imaging system to aid in interpretation. Cancer Cytopathol. 2010;118(1):56–64.

    PubMed  Google Scholar 

  13. Daniely M, Rona R, Kaplan T, Olsfanger S, Elboim L, Zilberstien Y, et al. Combined analysis of morphology and fluorescence in situ hybridization significantly increases accuracy of bladder cancer detection in voided urine samples. Urology. 2005;66(6):1354–9.

    PubMed  Google Scholar 

  14. Bubendorf L. Multiprobe fluorescence in situ hybridization (UroVysion) for the detection of urothelial carcinoma - FISHing for the right catch. Acta Cytol. 2011;55(2):113–9.

    CAS  PubMed  Google Scholar 

  15. Vlajnic T, Gut A, Savic S, Bubendorf L. The Paris system for reporting urinary cytology in daily practice with emphasis on ancillary testing by multiprobe FISH. J Clin Pathol. 2020;73(2):90–5.

    PubMed  Google Scholar 

  16. Furrer D, Jacob S, Caron C, Sanschagrin F, Provencher L, Diorio C. Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens. Diagn Pathol. 2013;8:17.

    PubMed  PubMed Central  Google Scholar 

  17. Hajdinjak T. UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol. 2008;26(6):646–51.

    CAS  PubMed  Google Scholar 

  18. Gomella LG, Mann MJ, Cleary RC, Hubosky SG, Bagley DH, Thumar AB, et al. Fluorescence in situ hybridization (FISH) in the diagnosis of bladder and upper tract urothelial carcinoma: the largest single-institution experience to date. Can J Urol. 2017;24(1):8620–6.

    PubMed  Google Scholar 

  19. Lavery HJ, Zaharieva B, McFaddin A, Heerema N, Pohar KS. A prospective comparison of UroVysion FISH and urine cytology in bladder cancer detection. BMC Cancer. 2017;17(1):247.

    PubMed  PubMed Central  Google Scholar 

  20. McHale T, Ohori NP, Cieply KM, Sherer C, Bastacky SI. Comparison of urinary cytology and fluorescence in situ hybridization in the detection of urothelial neoplasia: an analysis of discordant results. Diagn Cytopathol. 2019;47(4):282–8.

    PubMed  Google Scholar 

  21. Miki Y, Neat M, Chandra A. Application of the Paris system to atypical urine cytology samples: correlation with histology and UroVysion((R)) FISH. Cytopathology. 2017;28(2):88–95.

    CAS  PubMed  Google Scholar 

  22. Gayed BA, Seideman C, Lotan Y. Cost-effectiveness of fluorescence in situ hybridization in patients with atypical cytology for the detection of urothelial carcinoma. J Urol. 2013;190(4):1181–6.

    CAS  PubMed  Google Scholar 

  23. Kim PH, Sukhu R, Cordon BH, Sfakianos JP, Sjoberg DD, Hakimi AA, et al. Reflex fluorescence in situ hybridization assay for suspicious urinary cytology in patients with bladder cancer with negative surveillance cystoscopy. BJU Int. 2014;114(3):354–9.

    PubMed  PubMed Central  Google Scholar 

  24. Kipp BR, Halling KC, Campion MB, Wendel AJ, Karnes RJ, Zhang J, et al. Assessing the value of reflex fluorescence in situ hybridization testing in the diagnosis of bladder cancer when routine urine cytological examination is equivocal. J Urol. 2008;179(4):1296–301; discussion 301.

    PubMed  Google Scholar 

  25. Lotan Y, Bensalah K, Ruddell T, Shariat SF, Sagalowsky AI, Ashfaq R. Prospective evaluation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2008;179(6):2164–9.

    PubMed  Google Scholar 

  26. Montalbo R, Izquierdo L, Ingelmo-Torres M, Galve P, Sole M, Franco A, et al. Urine cytology suspicious for urothelial carcinoma: prospective follow-up of cases using cytology and urine biomarker-based ancillary techniques. Cancer Cytopathol. 2020;128(7):460–9.

    CAS  PubMed  Google Scholar 

  27. Savic S, Zlobec I, Thalmann GN, Engeler D, Schmauss M, Lehmann K, et al. The prognostic value of cytology and fluorescence in situ hybridization in the follow-up of nonmuscle-invasive bladder cancer after intravesical bacillus Calmette-Guerin therapy. Int J Cancer. 2009;124(12):2899–904.

    CAS  PubMed  Google Scholar 

  28. Schlomer BJ, Ho R, Sagalowsky A, Ashfaq R, Lotan Y. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2010;183(1):62–7.

    PubMed  Google Scholar 

  29. Seideman C, Canter D, Kim P, Cordon B, Weizer A, Oliva I, et al. Multicenter evaluation of the role of UroVysion FISH assay in surveillance of patients with bladder cancer: does FISH positivity anticipate recurrence? World J Urol. 2014.

    Google Scholar 

  30. Virk RK, Abro S, de Ubago JMM, Pambuccian SE, Quek ML, Wojcik EM, et al. The value of the UroVysion(R) FISH assay in the risk-stratification of patients with "atypical urothelial cells" in urinary cytology specimens. Diagn Cytopathol. 2017;45(6):481–500.

    PubMed  Google Scholar 

  31. Skacel M, Fahmy M, Brainard JA, Pettay JD, Biscotti CV, Liou LS, et al. Multitarget fluorescence in situ hybridization assay detects transitional cell carcinoma in the majority of patients with bladder cancer and atypical or negative urine cytology. J Urol. 2003;169(6):2101–5.

    CAS  PubMed  Google Scholar 

  32. Yoder BJ, Skacel M, Hedgepeth R, Babineau D, Ulchaker JC, Liou LS, et al. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol. 2007;127(2):295–301.

    PubMed  Google Scholar 

  33. Fritsche HM, Burger M, Dietmaier W, Denzinger S, Bach E, Otto W, et al. Multicolor FISH (UroVysion) facilitates follow-up of patients with high-grade urothelial carcinoma of the bladder. Am J Clin Pathol. 2010;134(4):597–603.

    PubMed  Google Scholar 

  34. Kipp BR, Karnes RJ, Brankley SM, Harwood AR, Pankratz VS, Sebo TJ, et al. Monitoring intravesical therapy for superficial bladder cancer using fluorescence in situ hybridization. J Urol. 2005;173(2):401–4.

    PubMed  Google Scholar 

  35. Whitson J, Berry A, Carroll P, Konety B. A multicolour fluorescence in situ hybridization test predicts recurrence in patients with high-risk superficial bladder tumours undergoing intravesical therapy. BJU Int. 2009;104(3):336–9.

    PubMed  Google Scholar 

  36. Mengual L, Marin-Aguilera M, Ribal MJ, Burset M, Villavicencio H, Oliver A, et al. Clinical utility of fluorescent in situ hybridization for the surveillance of bladder cancer patients treated with bacillus Calmette-Guerin therapy. Eur Urol. 2007;52(3):752–9.

    PubMed  Google Scholar 

  37. Liem E, Oddens JR, Vernooij RWM, Li R, Kamat A, Dinney CP, et al. The role of fluorescence in situ hybridization for predicting recurrence after adjuvant bacillus Calmette-Guerin in patients with intermediate and high risk nonmuscle invasive bladder cancer: a systematic review and meta-analysis of individual patient data. J Urol. 2020;203(2):283–91.

    PubMed  Google Scholar 

  38. Freund JE, Liem E, Savci-Heijink CD, de Reijke TM. Fluorescence in situ hybridization in 1 mL of selective urine for the detection of upper tract urothelial carcinoma: a feasibility study. Med Oncol. 2018;36(1):10.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin H, Lin T, Hao J, Qiu S, Xu H, Yu R, et al. A comprehensive comparison of fluorescence in situ hybridization and cytology for the detection of upper urinary tract urothelial carcinoma: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(52):e13859.

    Google Scholar 

  40. Reynolds JP, Voss JS, Kipp BR, Karnes RJ, Nassar A, Clayton AC, et al. Comparison of urine cytology and fluorescence in situ hybridization in upper urothelial tract samples. Cancer Cytopathol. 2014;122(6):459–67.

    PubMed  Google Scholar 

  41. Sassa N, Iwata H, Kato M, Murase Y, Seko S, Nishikimi T, et al. Diagnostic utility of UroVysion combined with conventional urinary cytology for urothelial carcinoma of the upper urinary tract. Am J Clin Pathol. 2019;151(5):469–78.

    CAS  PubMed  Google Scholar 

  42. Sutton AJ, Lamont JV, Evans RM, Williamson K, O'Rourke D, Duggan B, et al. An early analysis of the cost-effectiveness of a diagnostic classifier for risk stratification of haematuria patients (DCRSHP) compared to flexible cystoscopy in the diagnosis of bladder cancer. PLoS One. 2018;13(8):e0202796.

    PubMed  PubMed Central  Google Scholar 

  43. Huysentruyt CJ, Baldewijns MM, Ruland AM, Tonk RJ, Vervoort PS, Smits KM, et al. Modified UroVysion scoring criteria increase the urothelial carcinoma detection rate in cases of equivocal urinary cytology. Histopathology. 2011;58(7):1048–53.

    PubMed  Google Scholar 

  44. Tapia C, Glatz K, Obermann EC, Grilli B, Barascud A, Herzog M, et al. Evaluation of chromosomal aberrations in patients with benign conditions and reactive changes in urinary cytology. Cancer Cytopathol. 2011;119(6):404–10.

    PubMed  Google Scholar 

  45. Zellweger T, Benz G, Cathomas G, Mihatsch MJ, Sulser T, Gasser TC, et al. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer. 2006;119(7):1660–5.

    CAS  PubMed  Google Scholar 

  46. Zhou AG, Liu Y, Cyr MS, Garver J, Woda BA, Cosar EF, et al. Role of Tetrasomy for the diagnosis of urothelial carcinoma using UroVysion fluorescent in situ hybridization. Arch Pathol Lab Med. 2016;140(6):552–9.

    CAS  PubMed  Google Scholar 

  47. Wang J, Batourina E, Schneider K, Souza S, Swayne T, Liu C, et al. Polyploid superficial cells that maintain the urothelial barrier are produced via incomplete cytokinesis and Endoreplication. Cell Rep. 2018;25(2):464–77. e4

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hossain D, Hull D, Kalantarpour F, Maitlen R, Qian J, Bostwick DG. Does polyomavirus infection interfere with bladder cancer fluorescence in situ hybridization? Diagn Cytopathol. 2014;42(3):225–9.

    PubMed  Google Scholar 

  49. van der Aa MN, Steyerberg EW, Bangma C, van Rhijn BW, Zwarthoff EC, van der Kwast TH. Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J Urol. 2010;183(1):76–80.

    PubMed  Google Scholar 

  50. Kinders R, Jones T, Root R, Bruce C, Murchison H, Corey M, et al. Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin Cancer Res. 1998;4(10):2511–20.

    CAS  PubMed  Google Scholar 

  51. Oliveira MCD, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary biomarkers in bladder cancer: where do we stand and potential role of extracellular vesicles. Cancers. 2020;12(6):1400.

    Google Scholar 

  52. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47(6):736–48.

    PubMed  Google Scholar 

  53. Leyh H, Marberger M, Conort P, Sternberg C, Pansadoro V, Pagano F, et al. Comparison of the BTA stat test with voided urine cytology and bladder wash cytology in the diagnosis and monitoring of bladder cancer. Eur Urol. 1999;35(1):52–6.

    CAS  PubMed  Google Scholar 

  54. Wolfs JRE, Hermans TJN, Koldewijn EL, van de Kerkhof D. Novel urinary biomarkers ADXBLADDER and bladder EpiCheck for diagnostics of bladder cancer: a review. Urol Oncol. 2021;

    Google Scholar 

  55. Soloway MS, Briggman V, Carpinito GA, Chodak GW, Church PA, Lamm DL, et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol. 1996;156(2 Pt 1):363–7.

    CAS  PubMed  Google Scholar 

  56. Miyake M, Goodison S, Giacoia EG, Rizwani W, Ross S, Rosser CJ. Influencing factors on the NMP-22 urine assay: an experimental model. BMC Urol. 2012;12:23.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ng K, Stenzl A, Sharma A, Vasdev N. Urinary biomarkers in bladder cancer: a review of the current landscape and future directions. Urol Oncol. 2021;39(1):41–51.

    CAS  PubMed  Google Scholar 

  58. Allison DB, VandenBussche CJ. A review of urine ancillary tests in the era of the Paris system. Acta Cytol. 2020;64(1–2):182–92.

    CAS  PubMed  Google Scholar 

  59. Lotan Y, O'Sullivan P, Raman JD, Shariat SF, Kavalieris L, Frampton C, et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urol Oncol. 2017;35(8):531 e15–22.

    Google Scholar 

  60. Sapre N, Anderson PD, Costello AJ, Hovens CM, Corcoran NM. Gene-based urinary biomarkers for bladder cancer: an unfulfilled promise? Urol Oncol. 2014;32(1):48 e9–17.

    Google Scholar 

  61. Tan WS, Tan WP, Tan MY, Khetrapal P, Dong L, De Winter P, et al. Novel urinary biomarkers for the detection of bladder cancer: a systematic review. Cancer Treat Rev. 2018;69:39–52.

    CAS  PubMed  Google Scholar 

  62. Carolina BBoN. Urinary Tumor Markers for Bladder Cancer AHS – G2125: BlueCross BlueShield of North Carolina; 2020 Available from: https://www.bluecrossnc.com/sites/default/files/document/attachment/services/public/pdfs/medicalpolicy/urinary_tumor_markers_for_bladder_cancer.pdf.

  63. Roupret M, Gontero P, McCracken SRC, Dudderidge T, Stockley J, Kennedy A, et al. Diagnostic accuracy of MCM5 for the detection of recurrence in nonmuscle invasive bladder cancer Followup: a blinded, prospective cohort, Multicenter European study. J Urol. 2020;204(4):685–90.

    PubMed  Google Scholar 

  64. Gontero P, Montanari E, Roupret M, Longo F, Stockley J, Kennedy A, et al. Comparison of the performances of the ADXBLADDER test and urinary cytology in the follow-up of non-muscle-invasive bladder cancer: a blinded prospective multicentric study. BJU Int. 2021;127(2):198–204.

    CAS  PubMed  Google Scholar 

  65. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171(3):540–56. e25.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70(20):8169–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Beukers W, Kandimalla R, Masius RG, Vermeij M, Kranse R, van Leenders GJ, et al. Stratification based on methylation of TBX2 and TBX3 into three molecular grades predicts progression in patients with pTa-bladder cancer. Mod Pathol. 2015;28(4):515–22.

    CAS  PubMed  Google Scholar 

  68. Mancini M, Righetto M, Zumerle S, Montopoli M, Zattoni F. The Bladder EpiCheck Test as a Non-Invasive Tool Based on the Identification of DNA Methylation in Bladder Cancer Cells in the Urine: A Review of Published Evidence. Int J Mol Sci. 2020;21(18).

    Google Scholar 

  69. Trenti E, D'Elia C, Mian C, Schwienbacher C, Hanspeter E, Pycha A, et al. Diagnostic predictive value of the bladder EpiCheck test in the follow-up of patients with non-muscle-invasive bladder cancer. Cancer Cytopathol. 2019;127(7):465–9.

    PubMed  Google Scholar 

  70. Pierconti F, Martini M, Fiorentino V, Cenci T, Capodimonti S, Straccia P, et al. The combination cytology/epichek test in non muscle invasive bladder carcinoma follow-up: Effective tool or useless expence? Urol Oncol. 2021;39(2):131 e17–21.

    Google Scholar 

  71. Allory Y, Beukers W, Sagrera A, Flandez M, Marques M, Marquez M, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65(2):360–6.

    CAS  PubMed  Google Scholar 

  72. Leao R, Lee D, Figueiredo A, Hermanns T, Wild P, Komosa M, et al. Combined genetic and epigenetic alterations of the TERT promoter affect clinical and biological behavior of bladder cancer. Int J Cancer. 2019;144(7):1676–84.

    CAS  PubMed  Google Scholar 

  73. van Rhijn BW, Vis AN, van der Kwast TH, Kirkels WJ, Radvanyi F, Ooms EC, et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol. 2003;21(10):1912–21.

    PubMed  Google Scholar 

  74. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24(33):5218–25.

    CAS  PubMed  Google Scholar 

  75. Batista R, Vinagre J, Prazeres H, Sampaio C, Peralta P, Conceicao P, et al. Validation of a novel, sensitive, and specific urine-based test for recurrence surveillance of patients with non-muscle-invasive bladder cancer in a comprehensive Multicenter study. Front Genet. 2019;10:1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sieverink CA, Batista RPM, Prazeres HJM, Vinagre J, Sampaio C, Leao RR, et al. Clinical Validation of a Urine Test (Uromonitor-V2((R))) for the Surveillance of Non-Muscle-Invasive Bladder Cancer Patients. Diagnostics (Basel). 2020;10(10).

    Google Scholar 

  77. Kandimalla R, Masius R, Beukers W, Bangma CH, Orntoft TF, Dyrskjot L, et al. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res. 2013;19(17):4760–9.

    CAS  PubMed  Google Scholar 

  78. Roperch JP, Hennion C. A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients - Design of the Urodiag(R) PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC). BMC Med Genet. 2020;21(1):112.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hentschel AE, van der Toom EE, Vis AN, Ket JCF, Bosschieter J, Heymans MW, et al. A systematic review on mutation markers for bladder cancer diagnosis in urine. BJU Int. 2021;127(1):12–27.

    PubMed  Google Scholar 

  80. Avogbe PH, Manel A, Vian E, Durand G, Forey N, Voegele C, et al. Urinary TERT promoter mutations as non-invasive biomarkers for the comprehensive detection of urothelial cancer. EBioMedicine. 2019;44:431–8.

    PubMed  PubMed Central  Google Scholar 

  81. Springer SU, Chen CH, Rodriguez Pena MDC, Li L, Douville C, Wang Y, et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. elife. 2018;7

    Google Scholar 

  82. Ward DG, Gordon NS, Boucher RH, Pirrie SJ, Baxter L, Ott S, et al. Targeted deep sequencing of urothelial bladder cancers and associated urinary DNA: a 23-gene panel with utility for non-invasive diagnosis and risk stratification. BJU Int. 2019;124(3):532–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Harris T, Sheel A, Zong Y, Hutchinson LM, Cornejo KM, Bubendorf L, et al. Cytologically targeted next-generation sequencing: a synergy for diagnosing urothelial carcinoma. J Am Soc Cytopathol. 2021;10(1):94–102.

    PubMed  Google Scholar 

  84. Scott SN, Ostrovnaya I, Lin CM, Bouvier N, Bochner BH, Iyer G, et al. Next-generation sequencing of urine specimens: a novel platform for genomic analysis in patients with non-muscle-invasive urothelial carcinoma treated with bacille Calmette-Guerin. Cancer Cytopathol. 2017;125(6):416–26.

    CAS  PubMed  Google Scholar 

  85. Hentschel AE, Nieuwenhuijzen JA, Bosschieter J, Splunter APV, Lissenberg-Witte BI, Voorn JPV, et al. Comparative Analysis of Urine Fractions for Optimal Bladder Cancer Detection Using DNA Methylation Markers. Cancers (Basel). 2020;12(4).

    Google Scholar 

  86. Chen A, Fu G, Xu Z, Sun Y, Chen X, Cheng KS, et al. Detection of urothelial bladder carcinoma via microfluidic immunoassay and single-cell DNA copy-number alteration analysis of captured urinary-exfoliated tumor cells. Cancer Res. 2018;78(14):4073–85.

    CAS  PubMed  Google Scholar 

  87. Dudley JC, Schroers-Martin J, Lazzareschi DV, Shi WY, Chen SB, Esfahani MS, et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 2019;9(4):500–9.

    CAS  PubMed  Google Scholar 

  88. Babjuk M, Compérat E, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Rouprêt M, Shariat SF, Sylvester R, Zigeuner R. Non-muscle-invasive Bladder Cancer: european association of urology; Available from: https://uroweb.org/guideline/non-muscle-invasive-bladder-cancer/.

  89. Guo A, Wang X, Gao L, Shi J, Sun C, Wan Z. Bladder tumour antigen (BTA stat) test compared to the urine cytology in the diagnosis of bladder cancer: a meta-analysis. Can Urol Assoc J. 2014;8(5–6):E347–52.

    PubMed  PubMed Central  Google Scholar 

  90. McIntire PJ, Khan R, Hussain H, Pambuccian SE, Wojcik EM, Barkan GA. Negative predictive value and sensitivity of urine cytology prior to implementation of the Paris system for reporting urinary cytology. Cancer Cytopathol. 2019;127(2):125–31.

    PubMed  Google Scholar 

  91. McIntire PJ, Kilic I, Pambuccian SE, Wojcik EM, Barkan GA. The Paris system for reporting urinary cytology reduces atypia rates and does not alter the negative predictive value of urine cytology. J Am Soc Cytopathol. 2021;10(1):14–9.

    PubMed  Google Scholar 

  92. Chou R, Gore JL, Buckley D, Fu R, Gustafson K, Griffin JC, et al. Urinary biomarkers for diagnosis of bladder cancer: a systematic review and meta-analysis. Ann Intern Med. 2015;163(12):922–31.

    PubMed  Google Scholar 

  93. Kavalieris L, O'Sullivan P, Frampton C, Guilford P, Darling D, Jacobson E, et al. Performance characteristics of a multigene urine biomarker test for monitoring for recurrent urothelial carcinoma in a Multicenter study. J Urol. 2017;197(6):1419–26.

    PubMed  Google Scholar 

  94. Witjes JA, Morote J, Cornel EB, Gakis G, van Valenberg FJP, Lozano F, et al. Performance of the bladder EpiCheck methylation test for patients under surveillance for non-muscle-invasive bladder cancer: results of a Multicenter, prospective. Blinded Clinical Trial Eur Urol Oncol. 2018;1(4):307–13.

    PubMed  Google Scholar 

  95. van Kessel KE, Beukers W, Lurkin I. Ziel-van der made a, van der Keur KA, Boormans JL, et al. validation of a DNA methylation-mutation urine assay to select patients with Hematuria for cystoscopy. J Urol. 2017;197(3 Pt 1):590–5.

    PubMed  Google Scholar 

  96. Rodriguez Pena MDC, Springer SU, Taheri D, Li L, Tregnago AC, Eich ML, et al. Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch. 2020;476(3):423–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Bubendorf .

Editor information

Editors and Affiliations

Appendix

Appendix

UroVysion® Assay

The slide pretreatment with protease uncovers target DNA and is recommended in Pap-stained specimens. Decolorization is not mandatory since the stain is removed during further phases of FISH procedure. If using archival slides, remove the coverslip and mounting medium in xylene. Place the slides in 1% acid alcohol (HCL and 70% alcohol) overnight or until decolorized. The U-FISH assay can subsequently be conducted either manually or automatically. The first step is denaturation of specimen DNA to expose single-stranded target DNA. U-FISH probes should be prepared accordingly and applied to the selected area of the slide. The area should be coverslipped and sealed immediately to ensure optimal conditions. Hybridization of probes to target DNA sequences follows under appropriate conditions. The procedure is finished with post-hybridization washes to remove excessive probes. Slides should be dried in a dark area. The exact procedure of the FISH assay is described in the UroVysion kit datasheet. The procedure should be validated in each individual laboratory, together with positive and negative controls, to ensure optimal hybridization. Afterwards the specimen chosen for analysis is stained by DAPI solution. Slides are coverslipped and stored at −20 °C in the dark until analysis.

Automated Imaging Systems for UroVysion® FISH Analysis

The Duet TM System™ workstation integrates a microscope, CCD camera, motorized stage or slide-loader, computer, keyboard, mouse, joystick, monitor, and a dedicated software program. Up to 200 slides that have undergone the FISH procedure can be loaded and run overnight for inspection the following day. This latter feature may be suitable for diagnostic laboratories that receive high volumes of abnormal or atypical urines. Similarly, the Ikoniscope oncoFISH Bladder Test System has an automated scanning microscope system coupled with an image analysis work station. It features automated slide loading and handling, low and high magnification scanning to identify cells of interest, and digital image acquisition [10]. The MetaSystems uses an automated fluorescent scanning microscope and analysis software with “tile-sampling” method [16].

The BioView Duet System™ scans cells that are imaged at high resolution (under oil immersion) both in bright light illumination and in fluorescent illumination. Cells are classified by the system according to their morphological features, according to their staining on bright field (Giemsa or Papanicolaou stains, if target FISH is used), and according to the pattern of fluorescent signals. The automated microscope has micrometer-level precision in the X, Y, and Z axes which allows it to focus on cells and retain coordinate information for target cells. There are two modes of operation: [1] automatic scanning, which provides a gallery of all fields of view, and [2] manual scanning, which provides interactive control allowing the user to select the fields of view using either bright-field or fluorescent illumination.

Similar to manual scoring, the automated system scans the FISH slides by locating and scoring the nuclei exhibiting abnormalities such as enlargement, irregular borders, and patchy DAPI staining. As identification of abnormal or malignant cells based solely on aberrant morphology may be misleading, the BioView System™ classifies cells both by morphology on the DAPI fluorescence and by superimposed FISH signals. Cells are ranked based on a combination of nuclear features, including size, shape, DAPI intensity, and DAPI standard deviation inside the nucleus.

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bubendorf, L. et al. (2022). Ancillary Studies in Urinary Cytology. In: Wojcik, E.M., Kurtycz, D.F., Rosenthal, D.L. (eds) The Paris System for Reporting Urinary Cytology. Springer, Cham. https://doi.org/10.1007/978-3-030-88686-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88686-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88685-1

  • Online ISBN: 978-3-030-88686-8

  • eBook Packages: MedicineMedicine (R0)