Skip to main content

Chemical Processing of Bauxite: Alumina and Silica Minerals—Chemistry, Kinetics and Reactor Design

  • Chapter
  • First Online:
Smelter Grade Alumina from Bauxite

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 320))

Abstract

This Chapter provides an introduction to the Bayer process and how the mineral composition of bauxites affects the process variants and the principal parameters to be selected. The Chapter covers the rational of sizing of principal equipment (such as heat recovery system and reactors) and also of calculating the energy (heat) requirement of the digestion unit operation. Beside the processing behaviour of the main constituents of bauxite such as hydrated alumina and silica minerals, the Chapter covers the impact of other constituents, such as titania, iron compounds, organics, and other impurities. The use of lime in the Bayer process and the chemistry behind that is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bárdossy, G.J.J. Aleva, Lateritic bauxites, in Akadémiai Kiadó, Budapest (1990)

    Google Scholar 

  2. J.R. Glastonbury, Nature of sodium aluminate solutions, in Chemistry and Industry (1969), pp. 121–125

    Google Scholar 

  3. J. Zámbó, Structure of sodium aluminate liquors: molecular model of the mechanism of their decomposition, in Proceedings of TMS 115th Annual Meeting, ed. By R.E. Miller, New Orleans, LA, 2–6 Mar. 1986 Light Metals 1986, pp. 199–215

    Google Scholar 

  4. J.J. Kotte, Bayer digestion and predigestion desilication reactor design, in Proceedings of 110th AIME Annual Meeting, ed. by G.M. Bell, Chicago, Illinois, 22–26 Feb. 1981 Light Metals 1981, pp. 45–79

    Google Scholar 

  5. A Atasoy, An investigation on characterization and thermal analysis J. Therm. Anal. Calor. 81 (2005) 2 pp. 357-361

    Article  CAS  Google Scholar 

  6. I.Z. Pevzner, A.S. Dvorkin, M.J. Fiterman, N.I. Eremin, J.B. Rozen, Matematicheskoe opisanie processa obeskremnivania aluminatnih rastvorov (Mathematic description of desilication process of aluminate liquors). Tsvetnie Metalli 7 (1975), pp. 49–52

    Google Scholar 

  7. P.A. Lyew-Ayee, Bauxite reserves for the world aluminium industry, in Proceedings of 8th International Congress of ICSOBA, “Energy and Environment in Aluminium Industry”, Milan, Italy, 16–18 Apr 1997. Travaux ICSOBA, vol. 26, No. 29 (1999) pp. 9-31

    Google Scholar 

  8. I.E. Sajó, X-ray diffraction quantitative phase analysis of Bayer process solids, in Proceedings of Xth Conference of ICSOBA, held in Bhubaneswar, India, 28–30 Nov 2008. Travaux ICSOBA, vol. 34, No. 38 (2009), pp. 46–51

    Google Scholar 

  9. G. Bánvölgyi, Reactions of gibbsite and kaolinite in the Bayer liquor: a comprehensive kinetic model and an improvement of the low temperature digestion, in Proceedings of the 7th International Congress of ICSOBA, Balatonalmádi, Hungary, 22–26 June 1992. Travaux ICSOBA, vol. 23, No 25 (1996), pp. 155–171

    Google Scholar 

  10. G. Bánvölgyi, P. Siklósi, The Improved Low Temperature Digestion (ILTD) process: an economic and environmentally sustainable way of processing gibbsitic bauxites, in Proceedings of 127th TMS Annual Meeting, ed. by B. Welch, San Antonio, TX, 15–19 Feb 1998. Light Metals 1998, pp. 45–53. (The paper was reprinted in the Essential Readings in Light Metals, Vol. 1, Alumina and Bauxite, TMS-Wiley, 2013, pp. 362–370)

    Google Scholar 

  11. N.S. Raghavan, G.D. Fulford, Mathematical modelling of the kinetics of gibbsite extraction and kaolinite dissolution/desilication in the Bayer process, in Proceedings of 127th TMS Annual Meeting, ed. by B. Welch, San Antonio, TX, 15–19 Feb. 1998, Light Metals 1998, pp. 29–36

    Google Scholar 

  12. R. LaMacchia, Toward a better understanding of desilication product (DSP) precipitation kinetics, in Proceedings of the 9th International Alumina Quality Workshop, Perth, WA, 18–22 Mar 2012, pp. 214–218

    Google Scholar 

  13. T. Harato et al., The development of a modified Bayer process that reduces the desilication loss on soda by 50% compared to the conventional process, in Proceedings of 8th International ICSOBA Conference, Milan, Italy, 16–18 Apr. 1997 Travaux ICSOBA, vol. 24, No 28 (1997), pp. 205–213

    Google Scholar 

  14. J. Addai-Mensah et al., Sodium aluminosilicate solid phase specific fouling behaviour, in ECI Conference of Heat Exchanger Fouling and Cleaning. Fundamentals and Applications, Santa Fe, New Mexico, USA, 18–22 May 2003, Year 2004, Paper 11 (2004)

    Google Scholar 

  15. M.C. Barnes, J. Addai-Mensah, A.R. Gerson, A methodology for quantifying sodalite and cancrinite phase mixtures and the kinetics of the sodalite to cancrinite phase transformation Microporous Mesoporous Mater. 31 (1999) pp. 303-319

    Article  CAS  Google Scholar 

  16. M.C. Barnes, J. Addai-Mensah, A.R. Gerson, The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent liquors Microporous Mesoporous Mater. 31 (1999) pp. 287-302

    Article  CAS  Google Scholar 

  17. E. Nemecz, K. Solymár, S. Elek, A Bayer-rendszerű timföldgyártás során keletkező nátrium- és kalcium-alumínium-szilikátokról. (On the sodium and calcium-aluminium-silicates formed in the Bayer process.) Bányászati és Kohászati Lapok – Kohászat, 101, 3 (1968), pp. 89–97

    Google Scholar 

  18. H. Peng, D. Seneviratne, J. Vaughan, Role of the amorphous phase during sodium aluminosilicate precipitation Ind. Eng. Chem. Res. 57 (2018) pp. 1408–1416

    Article  CAS  Google Scholar 

  19. L. Shi, J. Li, A.R. Gerson, The kinetics of desilication of synthetic Bayer spent liquor seeded with synthetic sodalite and cancrinite, in Proceedings of the 10th International Alumina Quality Workshop, Perth, WA, 19–23 Apr 2015, pp. 155–163

    Google Scholar 

  20. G. Bánvölgyi, Scale formation in alumina refineries, in Proceedings of the 34th International Conference and Exhibition of ICSOBA, 3–6 Oct. 2016, Quebec City, Canada. No 45 (2016), pp. 101–114

    Google Scholar 

  21. G.I.D. Roach, A.J. White, Dissolution of kaolinite in caustic liquors, in Proceedings of 117th TMS Annual Meeting, in ed. by L.G. Boxall, Phoenix, Arizona, 25–28 Jan. 1988, Light Metals 1988, pp. 41–47

    Google Scholar 

  22. G. Bánvölgyi, A. Csordás-Tóth, I. Tassy, In situ formation of sodium aluminium hydrosilicate from kaolinite, in Proceedings of the 120th TMS Annual Meeting, ed. by E. Rooy, New Orleans, LA, 17–21 Feb. 1991, Light Metals 1991, pp. 5–15

    Google Scholar 

  23. G. Bánvölgyi, Reducing of the silica problem in the alumina refinery of C.V.G. BAUXILUM conclusive report of ICF Kaiser-Aluterv Ltd., Budapest, Hungary, Manuscript. Apr. 1998, Attachment 6. Detailed Material, Heat and Silica Balances

    Google Scholar 

  24. P.P. Siklósi, Mathematical model of the technology of the Bayer alumina manufacturing process, in Aluterv-FKI - UNIDO, Budapest, Manuscript (1984), p. 40

    Google Scholar 

  25. A.N. Adamson, E.J. Bloore, A.R. Carr, Basic principles of Bayer process design, in Extractive Metallurgy of Aluminium, ed. by G. Gerard, P.T. Stroup, vol. 1, Alumina, Interscience Publishers, New York, London, Sydney, 1963

    Google Scholar 

  26. S.P. Rosenberg, S. Healy, A thermodyanamic model for gibbsite solubility in Bayer liquors, in Proceedings of the 4th International Alumina Quality Workshop, Darwin, Northern Territory, 2–7 June 1996, pp. 301–310

    Google Scholar 

  27. G. Bánvölgyi, Zárójelentés. Gibbsites bauxitok kovasavtalanításának és feltárásának vizsgálata. (Final Report on the Investigation of the Desilication and Digestion of Gibbsitic Bauxites). Manuscript, Aluterv-FKI, Budapest (1990), p. 23

    Google Scholar 

  28. M. Jamialahmadi, H. Müller–Steinhagen, Determining silica solubility in Bayer process liquor. JOM 50(11) (1998), pp. 44–49

    Google Scholar 

  29. I.G. Zsélyi, Improved Low Temperature Digestion (140–150°C), modellezés, érzékenységanalízis and paraméterbecslés. (Modeling of the ILTD Process (at about 140–150°C), Sensitivity Analysis, Parameter Estimation) Interim Report as of 23 Nov 2008

    Google Scholar 

  30. K. Yamada, M. Yoshihara, S. Tasaka, Properties of scale in Bayer process, in Proceedings of the 114th Annual Meeting of TMS, ed. by H.O. Bohner, New York, 24–28 Feb. 1985, Light Metals 1985, pp. 223–235

    Google Scholar 

  31. T. Harato, T. Ishida, K. Yamada, Autoprecipitation of gibbsite and boehmite, in Proceedings of 111th AIME Annual Meeting, ed. by J.E. Andersen, Dallas TX, 14–18 Feb. 1982, Light Metals 1982, pp. 37–48

    Google Scholar 

  32. J.G. Lepetit, Autoprecipitation of alumina in the Bayer process, in Proceedings of TMS 115th Annual Meeting, ed. by R.E. Miller, New Orleans, LA, 2–6 Mar. 1986, Light Metals 1986, pp. 225–230

    Google Scholar 

  33. M. Authier-Martin et al., Boehmite reversion: predictive test and critical parameters for bauxites from different geographical origins, in Proceedings of the 6th International Alumina Quality Workshop, 8–13 Sept. 2002, Brisbane, Queensland (2002), pp. 109–114

    Google Scholar 

  34. J. Loh et al., Boehmite vs. gibbsite precipitation, in Proceedings of 134th TMS Annual Meeting, San Francisco, California, 13–17 Feb. 2005, Light Metals 2005, pp. 203–208

    Google Scholar 

  35. F. Picard, V. Ouellet, G. Forté, Towards a precise and accurate method to determine bohemite reversion, in Proceedings of 7th International Alumina Quality Workshop, Perth, WA, 16–21 Oct 2005, pp. 193–198.

    Google Scholar 

  36. A.G. Suss et al., Geological mineral and process features of Fria bauxites (Guinea), in Proceedings of 7th International Alumina Quality Workshop, Perth, WA, 16–21 Oct 2005, pp. 193–198

    Google Scholar 

  37. V. Ouellet, G. Forté, F. Picard, Utilization of thermogravimetric analysis for quantification of aluminium phases in red mud effects of Bayer liquor on boehmite reversion, in Proceedings of 17th International Symposium of ICSOBA, Montreal, Canada, 1–4 Oct. 2006, Travaux, vol. 33, No. 37 (2006), pp. 166–177

    Google Scholar 

  38. E. Bujdosó, A. Imre, L. Tóth, Autoklávkeverők keverési hatásfokának vizsgálata radioaktív izotóppal (Investigation of the mixing effectiveness of agitators of autoclaves by radioactive isotopes) Fémipari Kutató Intézet Közleményei V. Budapest (1961), pp. 99–105

    Google Scholar 

  39. G. Winkhaus, Measurements by means of radioisotopes in industrial tube digester and autoclave lines of bauxite plants, in Proceedings of 2nd International Symposium of ICSOBA, Budapest, 6–10 Oct 1969, vol. III (1971), pp. 147–157

    Google Scholar 

  40. G. Bánvölgyi, Production of bauxite residue with low soda and high iron content: the ILTD process option, in Proceedings of the 2nd Bauxite Residue Valorisation and Best Practices Conference, ed. by Y. Pontikes, Athens, Greece, 7–10 May 2018, pp. 67–76

    Google Scholar 

  41. G. Bánvölgyi, How to increase the economic viability of Bayer alumina by the ILTD process? Lecture at the IBAAS—JNARDDC Webinar 2020, 4–6 Nov 2020

    Google Scholar 

  42. I. Korcsmáros, Computerized evaluation of the operation mechanism of digester-lines in alumina plants by mathematical modeling, in Proceedings of 4th International Congress for the Study of Bauxites Alumina and Aluminium, Athens, Greece, 9–12 Oct. 1978, vol. 3 (1978), pp. 189–205

    Google Scholar 

  43. B. Pei, D. Taylor, D. Thomas, Extraction kinetics of Weipa monohydrate bauxite, in Proceedings of the 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sept 2002, pp. 123–127

    Google Scholar 

  44. T. Oku, K. Yamada, The dissolution rate of quartz and the rate of desilication in the Bayer liquor, in Proceedings of Symposia 100th Annual Meeting, ed. by T.G. Edgeworth, New York, 1–4 Mar. 1971, Light Metals 1971, pp. 31–45

    Google Scholar 

  45. K. Zheng, The influence of sodium carbonate on sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions J. Crystal Growth 171 (1997) 1–2 pp. 197-208 https://doi.org/10.1016/S0022-0248(96)00480-0

    Article  CAS  Google Scholar 

  46. B.I. Whittington, Quantification and characterisation of hydrogarnet and cancrinite present in desilication product (DSP) by powder X-ray diffraction, in Proceedings of 4th International Alumina Quality Workshop, Darwin, 2–7 June 1996, pp. 413–422

    Google Scholar 

  47. K. Wefers, Zur chemischen Technologie des Bauxitaufschlusses IV. Untersuchungen im system Na2O-Al2O3-TiO2-H2O. (To the chemical process of bauxite digestion. Studies in system of Na2O-Al2O3-TiO2-H2O) Metall 25(3), (1971) pp. 239–250

    Google Scholar 

  48. E. Schultze-Rhonhof, G. Winkhaus, Untersuchungen im system Na2O-CaO-Al2O3-TiO2-H2O bei 100 oC unter Normaldruck, (Studies in system of Na2O-CaO-Al2O3-TiO2-H2O at 100 oC under normal pressure) Zeitschrift für anorganische und allgemeine Chemie 390(2), (1972), pp. 97–103

    Google Scholar 

  49. E. Schultze-Rhonhof, Untersuchungen im system Na2O-CaO-Al2O3-TiO2-H2O im Temperaturbereich 100–275°C (Studies in system of Na2O-CaO-Al2O3-TiO2-H2O in 100–275 oC temperature range) Zeitschrift für anorganische und allgemeine Chemie 396, (1973) pp. 303–307

    Google Scholar 

  50. V. Hazainé Borsiczky, K. Solymár, A bauxitok TiO2 tartalmának szerepe a Bayer-rendszerű timföldgyártásban. (The role of the TiO2 content of bauxites in the Bayer process.) Bányászati és Kohászati Lapok – Kohászat 101(5), (1968) pp. 187–193

    Google Scholar 

  51. N.S. Malts, Efficiency of lime use in Bayer alumina production, in Proceedings of the 120th TMS Annual Meeting, ed. by E. Rooy, New Orleans, LA, 17–21 Feb. 1991, Light Metals 1991, pp. 257–262

    Google Scholar 

  52. D. Croker, M. Loan, K. Hodnett, Sodium titanate formation in high temperature Bayer digestion, in Proceedings of 17th International Symposium of ICSOBA Combined with Light Metals 2006 and of the Metallurgical Society of CIM, Montréal, Canada, 1–4 Oct. 2006, Travaux ICSOBA, vol. 33, No. 37 (2006), pp. 154–165

    Google Scholar 

  53. K.I. Verghese, Impact of impurities on the Bayer process, in Proceedings of 8th International Light Metals Congress. Leoben-Vienna (1987), pp. 42–46

    Google Scholar 

  54. P. Smith, Reactions of lime under high temperature Bayer digestion conditions, in Proceedings of 10th International Alumina Quality Workshop, Perth, WA, 19–23 Apr 2015, pp. 373–381

    Google Scholar 

  55. S.P. Rosenberg, D.J. Wilson, C.A. Heath, Some aspects of calcium chemistry in the Bayer process, in Proceedings of 130th TMS Annual Meeting, ed. by J.L. Anjier, New Orleans, Louisiana, 11–15 Feb. 2001, Light Metals 2001, pp. 19–26

    Google Scholar 

  56. G. Riley et al., Plant impurity balances and impurity inclusion in DSP, in Proceedings of the 5th International Alumina Quality Workshop, Bunbury, WA, 21–26 Mar. 1999, Report 41

    Google Scholar 

  57. G.W. Riley et al., A generic system of plant impurity balance models, in Proceedings of the 6th International Alumina Quality Workshop, 8–13 Sept 2002, Brisbane, Queensland, pp. 144–148

    Google Scholar 

  58. A. Kuvyrkina et al., The effect of DSP structure on removal of impurities from refinery liquor and efficiency of alkali recovery process, in Proceedings of the TMS 137th Annual Meeting, New Orleans, LA, 9–13 Mar. 2008, Light Metals 2008, pp. 127–132

    Google Scholar 

  59. Personal communication with Ken Evans. Nov 2018

    Google Scholar 

  60. P Smith The processing of high silica bauxites—review of existing and potential processes Hydrometallurgy 98 (2009) pp.162 176

    Article  CAS  Google Scholar 

  61. W.E. Wahnsiedler, The kinetics of bauxite digestion in the Bayer process, in Proceedings of the TMS 113th—AIME Annual Meeting, ed. by J.P. McGeer, Los Angeles, CA, Feb 27–Mar 1. 1984, Light Metals 1984, pp. 146–182

    Google Scholar 

  62. M. Authier-Martin, G.D. Fulford, F. Feret, Bauxite extractable phases in the Bayer high temperature process: Re-assessment of boehmite content aluminium substitution in alumino-goethite, in Proceedings of 5th International Alumina Quality Workshop, Bunbury WA, 21–26 Mar 1999, Report 37

    Google Scholar 

  63. D. Thomas, B. Pei, Chemical reaction engineering in the Bayer process, in Proceedings of the TMS 136th Annual Meeting, ed. by M. Sorlie, Orlando, Florida, USA, Feb 25–Mar 1. 2007, Light Metals 2007, pp. 49–54

    Google Scholar 

  64. O. Levenspiel Chemical Reaction Engineering, Wiley USA (1972)  

    Google Scholar 

  65. K.G. Denbigh, J.C.R. Turner, Kémiai reaktorok (Chemical Reactors). Műszaki Könyvkiadó, Budapest (1971), p. 22

    Google Scholar 

  66. P. Benedek, A. László, A Vegyészmérnöki Tudomány Alapjai. (The Basics of the Chemical Engineering Science) Műszaki Könyvkiadó, Budapest (1964), p. 54

    Google Scholar 

  67. W.J. Müller, H. Hiller, Verfahren zur Herstellung der Tonerde. (Process for production of alumina) German Patent DE579114, Issued 1933

    Google Scholar 

  68. B. Lányi, Des Schnelle, Kontinuerliche Bauxitaufschluss (The fast, continuous digestion of bauxite), in Proceedings of Symposium sur les bauxites, oxydes et hydroxides d’aluminium, Zagreb, 1–3 Octobre 1963, Zagreb, vol. III (1964), pp. 105–117

    Google Scholar 

  69. H. Peters, Tube digestion—late success of a VAW technology, in Proceedings of 35th International Conference of ICSOBA, Hamburg, Germany, 2–5 Oct. 2017, Travaux ICSOBA, No. 46 (2017), pp. 145–153

    Google Scholar 

  70. K. Bielfeld, W. Arnswald, Aluminium, 43, 6 (1967), p. 355

    Google Scholar 

  71. F. Orbán et al., Processing of monohydrate bauxites with tube digestion, in Proceedings of the TMS 118th Annual Meeting, ed. by P.G. Campbell, Las Vegas, Nevada, Feb 27–Mar 3. 1989, Light Metals 1989, pp. 1027–1034

    Google Scholar 

  72. T. Ogava et al., Effect of acid cleaning using inhibitor in a tubular digestion and in a vapour recompressor evaporator at Sumitomo’s Alumina Refinery, in Proceedings of the 7th International Alumina Quality Workshop, Perth, WA, 16–21 Oct 2005, pp. 41–45

    Google Scholar 

  73. S. Ostap, Effect of bauxite mineralogy on its processing characteristics, in BAUXITE Proceedings of 1984 Bauxite Symposium, ed. by L. Jr. Jacob, Los Angeles, California, Feb 27–Mar 1 1984, pp. 651–670

    Google Scholar 

  74. J.G. Pulpeiro et al., Sizing an organic control system for the Bayer process, in Proceedings of TMS 127th Annual Meeting, ed. by B. Welch, San Antonio, TX, 15–19 Feb. 1998 Light Metals 1998, pp. 89–95

    Google Scholar 

  75. G. Bárdossy, G.J.J. Aleva, Lateritic bauxites, in Akadémiai Kiadó, Budapest, pp. 147–148. (1990) (In the monograph referred the contents of organic compounds are given as g/L. This g/L unit is deemed to be a mistype. GB)

    Google Scholar 

  76. R.L. Clegg, L.G. Armstrong, Development of liquor purification at Alcan Gove, in Proceedings of 7th International Alumina Quality Workshop, Perth, WA, 16–21 Oct 2005, pp. 137–141

    Google Scholar 

  77. G. Lever, Identification of organics in Bayer liquor, in Proceedings of 107th AIME Annual Meeting, ed. by J.J. Miller, Denver, Colorado, Feb 26–Mar 2. 1978, Light Metals 1978, pp. 71–83

    Google Scholar 

  78. M.A. Wilson et al., Transformation of organics input to alumina refineries, in Proceedings of the 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sept 2002, pp 67–72

    Google Scholar 

  79. L.G. Armstrong, S.J. Healy, Degradation of liquor organics during Bayer digestion cycles, in Proceedings of 17th International Symposium of ICSOBA Combined with Light Metals 2006 and of the Metallurgical Society of CIM., Montréal, Canada, 1–4 Oct 2006. Travaux ICSOBA, vol. 33, No. 37 (2006), pp. 291–301

    Google Scholar 

  80. K. Yamada, T. Hashimoto, K. Nakano, Behaviour of organic substances in the Bayer process, in Proceedings of the 102nd AIME Annual Meeting, ed. by A.V. Clack, Chicago, Illinois. Light Metals 1973, pp. 745–753

    Google Scholar 

  81. M.M. Reyhani et al., Gibbsite nucleation at sodium oxalate surfaces, in Proceedings of 5th International Alumina Quality Workshop, Bunbury, WA, 21–26 Mar 1999, Report No 19

    Google Scholar 

  82. K. Solymár, M. Gimpel-Kazár, E. Molnár, Determination and evaluation of organic balances of alumina refineries, in Proceedings of TMS 125th Annual Meeting, Anaheim, California, USA, 4–8 Feb. 1996, Light Metals 1996, pp. 29–35

    Google Scholar 

  83. O’Connell et al., Maintaining an oxalate free precipitation circuit at Aughinish alumina, in Proceedings of the 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sept 2002, pp. 270–273

    Google Scholar 

  84. K.R. Beckham, S.C. Grocott, A thermodynamically based model for the oxalate solubility in Bayer liquor, in Proceedings of TMS 122nd Annual Meeting, ed. by S.K. Das, Denver, Colorado, 21–25 Feb. 1993, Light Metals 1993, pp. 167–172

    Google Scholar 

  85. B. Whittington, The chemistry of CaO and Ca(OH)2 relating to the Bayer process Hydrometallurgy 43 (1996) pp. 13-35

    Article  CAS  Google Scholar 

  86. X. Pan et al., Effect of lime addition on the predesilication and digestion properties of a gibbsitic bauxite, in Proceedings of TMS 141st Annual Meeting, ed. by C. Suarez, Orlando, FL, 11–15 Mar. 2012, Light Metals 2012, pp. 39–42

    Google Scholar 

  87. G. Roach, E. Jamieson, Effect of bauxite and digestion conditions on iron in SGA, in Proceedings of 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sept, 2002, p. 340, Paper 56

    Google Scholar 

  88. P. Basu, Reactions of iron minerals in sodium aluminate solutions, in Proceedings of 112th AIME Annual Meeting, ed. by E.M. Adkins, Atlanta, Georgia, Mar. Light Metals 1983, pp. 83–97

    Google Scholar 

  89. G. Roach, The equilibrium approach to causticisation for optimising liquor causticity, in Proceedings of TMS 129th Annual Meeting, ed. by E.D. Peterson, Nashwille, TN, 12–16 Mar. 2002, Light Metals 2002, pp. 228–234

    Google Scholar 

  90. A. Lalla, R. Arpe, 30 years of experience with tube digestion, in Proceedings of 17th International Symposium of ICSOBA Combined with Light Metals 2006 and of the Metallurgical Society of CIM, Montréal, Canada, 1–4 Oct 2006, pp. 105–113

    Google Scholar 

  91. A. Lalla, R. Arpe, 12 years experience with wet oxidation, in Proceedings of TMS 131st Annual Meeting, Seattle, ed. by W.A. Schneider, Washington, 17–21 Feb. 2002, Light Metals 2002, pp. 177–180

    Google Scholar 

  92. D. Mulligan, Environmental management in the Australian minerals and energy industries, principles and practices (1996)

    Google Scholar 

  93. G. Graham, R. Capil, R. Davies, Odour destruction for digestion vent gases, in Proceedings of the 6th International Alumina Quality Workshop, 8–13 Sept 2002, Brisbane, Queensland, pp. 316–319

    Google Scholar 

  94. S.J. Cox, Odour emissions reduction case study at Alcoa’s Wagerup alumina refinery, in Proceedings of 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sep, 2002, pp. 309–315

    Google Scholar 

  95. C. Dobbs et al., Mercury emissions in the Bayer refinery—an overview, in Proceedings of 7th International Alumina Quality Workshop, Perth, WA, 16–21 Oct 2005, pp. 199–20

    Google Scholar 

  96. F. Habashi, A hundred years of the Bayer process for alumina production, in Proceedings of TMS 117th Annual Meeting, ed. by L.G. Boxall, Phoenix, Arizona, 25–28 Jan. 1988, Light Metals 1988, pp. 85–93

    Google Scholar 

  97. P. Landry, H. Edwards, Pressure decantation at Gramercy Alumina, in Proceedings of the TMS 136th Annual Meeting, ed. by M. Sorlie, Orlando, FL, Feb 25–Mar 1. 2007, Light Metals 2007, pp. 470–475

    Google Scholar 

  98. J. Doucet et al., Pressure decantation technology: the Kaiser Gramercy experience, 6th International Alumina Quality Workshop, Brisbane, Queensland, 8–13 Sept 2002, pp. 94–99

    Google Scholar 

  99. J.M. Lamerant, Y. Perret, Boehmitic reversion in a double digestion process on a bauxite containing trihydrate and monohydrate, in Proceedings of TMS 131st Annual Meeting, ed. by W.A. Schneider, Seattle, Washington, 17–21 Feb. 2002, Light Metals 2002, pp. 377–380

    Google Scholar 

  100. Q. Chen, X. Yuming, L. Hepler, Calorimetric study of the digestion of gibbsite, A1(OH)3(cr), and thermodynamics of aqueous aluminate ion, A1(OH)4-(aq). Canadian Journal of Chemistry 69, (1991) pp. 1685–1690

    Google Scholar 

  101. B. Hemingway, R, Robie, J. Apps, Revised values for the thermodynamic properties of boehmite, AlO(OH) and related species and phases in the system Al-H-O Am. Miner. 76 (1991) pp. 445-457

    CAS  Google Scholar 

  102. https://chemistry.stackexchange.com/questions/47742/theoretical-temperature-change-in-lime-hydration . Accessed on 25 Dec 2018

  103. L. Kirwan et al., Characterisation of iron mineralogy in Jamaican bauxite and associated aspects of alumina and soda losses, in Proceedings of TMS 138th Annual Meeting, ed. by G. Barne, San Francisco, California, 15–19 Feb. 2009, Light Metals 2009, pp 133–138

    Google Scholar 

  104. G. Bonel, J.C. Labarthe, C. Vignoles, Contribution á l’etude structurale des apatites carbonatées de type B, (Contribution to the structural studies of carbonate apatites type B) Colloques Internationaux C.N.R.S., 230 (1975), pp. 117–125

    Google Scholar 

  105. J. Zöldi et al., Iron hydrogarnets in the Bayer process, in Proceedings of the TMS 116th Annual Meeting, ed. by R.D. Zabreznik, Denver, Colorado, 24–26 Feb. 1987, Light Metals 1987, pp. 105–111

    Google Scholar 

  106. G. Pásztor, P. Siklósi et al., Könnyűfémek metallurgiája (Metallurgy of Light Metals) Tankönyvkiadó, Budapest (1991), p. 57

    Google Scholar 

  107. H. Mercier, R. Magrone, Influence de l’addition de chaux a l’attaque alcaline en voie humide des bauxites a diaspore. (Influence of the addition of lime to the wet alkaline attack of diaspore in bauxites.) Sommaire de ICSOBA 3e Congres International, Nice, France (1973), pp. 513–522

    Google Scholar 

  108. S. Gu, Key technology development of Bayer process in China, in Proceeding Book of 32th International Conference of ICSOBA-2014 in Zhengzhou, China, 12–15 Oct 2014, No 43 pp. 154–162

    Google Scholar 

  109. Á. Juhász, Orbán F-née, M. Matula, A Bayer-eljárás során keletkező nátrium-alumínium-szilikátok kémiai összetételének és szerkezetének vizsgálata. (Investigation of chemical composition and structure of the sodium-aluminium-silicates that formed in the Bayer process) Bányászati és Kohászati Lapok – KOHÁSZAT 11, (1965), pp. 513–521

    Google Scholar 

  110. I. Vörös et al., Causticization of red mud, in Int. Colloqium on Alumina Production from Low Grade Bauxites, Banska Bystrica – Ziar nad Hronom (Czechoslovakia), 6–8 June 1972. Travaux ICSOBA No 12 (1974), pp. 121–134

    Google Scholar 

  111. K. Solymár, M. Orbán, J. Zöldi, G. Baksa, Methods for reducing NaOH losses in the Hungarian alumina plants, in Proceedings of the 5th International Congress of ICSOBA, 26–28 Sept 1983. Zagreb, Yugoslavija No 18 (1983), pp. 377–390

    Google Scholar 

  112. Q. Zhao et al., Economic analysis of producing alumina with low-grade bauxite (red mud) by calcification-carbonization method, in Proceedings of TMS 143rd Annual Meeting, ed. by J. Grandfield, San Diego, CA, 14–16 Feb. 2014, Light Metals 2014, pp. 165–168

    Google Scholar 

  113. P.J. Cresswell, D.J. Milne, Hydrothermal Recovery of Soda and Alumina from Red Mud: Test in a Continuous Flow Reactor. In Proceedings of the TMS-AIME 113th Annual Meeting, ed. by J.P. McGeer Los Angeles, CA, February 27 – March 1 1984, Light Metals 1984, pp. 211–221.

    Google Scholar 

  114. K. Solymár, J. Steiner, J. Zöldi, Technical pecularities and viability of hydrothermal treatment of red mud, in Proceedings of the TMS 126th Annual Meeting, ed. by R. Huglen, Orlando, FL, 9–13 Feb. 1997, Light Metals 1997, pp. 49–54

    Google Scholar 

  115. S.P. Rosenberg, D.M. Wilson, C.A. Heath, Improved Bayer causticisation. Australian Patent, No. 769770, Granted: 05.02.2004.

    Google Scholar 

  116. P.J. The, T.J. Sivakumar, The effect of impurities on calcium in Bayer liquor, in Proceedings of the TMS 114th Annual Meeting, ed. by H.O. Bohner, New York, 24–28 Feb. 1985, Light Metals 1985, pp. 209–222

    Google Scholar 

  117. D. Wilson et al., Fluoride chemistry in the Bayer process, in Proceedings of the Sixth International Alumina Quality Workshop, Brisbane, Australia, 8–13 Sept 2002, pp. 281– 287

    Google Scholar 

  118. J. Zámbó, M. Orbán-Kelemen, Calcium oxide and magnesium oxide compound formation in processing calcite-dolomite bearing bauxites by the Bayer method Acta Tech. Acad. Sci. Hung. 82 (1976) 3–4 pp. 333-352

    Google Scholar 

  119. N.S. Malts, The intensifying action of upon the kinetics of bauxite leaching Sov. J. Non-Ferrous Met. 26 (1985) 11 pp. 38-40

    Google Scholar 

  120. S Gu, R Cao, X Chen, Calcium hydroxytitanate in the Bayer digestion process Rare Met. (China) 8 (1989) 1 pp. 14-18

    CAS  Google Scholar 

  121. D. Croker, M. Loan, B.K. Hodnett, Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species Cryst. Growth Des. 9 (2009) 5 pp. 2207-2213

    Article  CAS  Google Scholar 

  122. A. Suss et al., High titanium bauxites: specific features of mineral composition and behaviour in Bayer cycle (by the example of Indian bauxites), in Proceedings of the Sixth International Alumina Quality Workshop, Brisbane, Australia, 8–13 Sept 2002, pp. 180–184

    Google Scholar 

  123. G.D. Fulford, Scavenging non-filterable iron from Bayer liquors using activated digester sands, in Proceedings of the TMS 118th Annual Meeting, ed. by P.D. Campbell, Las Vegas, Nevada, Feb 27–Mar 3. 1989, Light Metals 1989, pp. 77–89

    Google Scholar 

  124. A. Suss et al., The impact of magnesium on tricalcium aluminate (TCA) filter aid properties, in Proceedings of the 8th International Alumina Quality Workshop in Darwin, Northern Territorry, 7–12 Sept 2008, pp. 37–43

    Google Scholar 

  125. L.J. Andermann, G.J. Pollet, The manufacture of tricalcium aluminate, in Proceedings of the TMS 132nd Annual Meeting, ed. by B. Sadler, San Diego, California, USA, 2–6 Mar. 2003, Light Metals 2003, pp. 11–17

    Google Scholar 

  126. S.C.A. Franca et al., Some aspects of tricalcium aluminate hexahydrate formation on the Bayer process, in Proceedings of the TMS 139th Annual Meeting, ed. by J.A. Johnson, Seattle, Washington, USA, 14–18 Feb. 2010, Light Metals 2010, pp. 63–66

    Google Scholar 

  127. V.C. HuiLing, Optimal concentration of filter aid for Bayer alumina precoat filters: optimisation of filtration rate through an effective filter-aid particle size distribution. Ph.D. thesis, Unversity of Queensland (2002)

    Google Scholar 

  128. M. Mohapatra, S. Acharya, Tricalcium aluminate hexahydrate (TCA) synthesis and characterization. In: Proceedings of the TMS 139th Annual Meeting ed. by J.A. Johnson, Seattle, Washington, USA, February 14–18, 2010, Light Metals 2010, pp. 119–124

    Google Scholar 

  129. N. Mugnier, P. Clérin, J. Sinquin, Industrial experience of polishing filtration performance. Improvement and interpretation, in Proceedings of TMS 130th Annual Meeting, ed. by J.L. Anjier, New Orleans, Louisiana, 11–15 Feb. 2001, Light Metals 2001, pp. 33–39

    Google Scholar 

  130. J.T. Malito, Improving the operation of red mud pressure filters, in Proceedings of TMS 125th Annual Meeting, ed. by W. Hale, Anaheim, California, USA, 4–8 Feb. 1996, Light Metals 1996, pp. 81–86

    Google Scholar 

  131. J.M. Rousseaux, P. Ferland, Impact of excess synthetic flocculant on security filtration, in Proceedings of TMS 138th Annual Meeting, ed. by G. Bearne, San Francisco, California, USA, 15–19 Feb. 2009, Light Metals 2009, pp. 157–161

    Google Scholar 

  132. J. Romero, F. Gauthier, Improvements in overall performance of security filtration area, in Proceedings of the TMS 121st Annual Meeting, ed. by E. Cutshall, San Diego, California, 1–5 Mar. 1992, Light Metals 1992, pp. 97–98

    Google Scholar 

  133. B.I. Whittington, T.M. Fallows, M.J. Willing, Tricalcium aluminate hexahydrate (TCA) filter aid in the Bayer industry: factors affecting TCA preparation and morphology Int. J. Miner. Process. 49 (1997) 1 29

    Article  CAS  Google Scholar 

  134. S.P. Rosenberg, D.J. Wilson, Process for filter aid production in alumina refineries, US Patent 7,192,568 (Date of patent: 20 Mar 2007)

    Google Scholar 

  135. R.C. Young, Chemistry of Bayer liquor causticisation, in Proceedings of TMS 111th AIME Annual Meeting, ed. by J.E. Andersen, Dallas TX, 14–18 Feb. 1982, Light Metals 1982, pp. 97–117

    Google Scholar 

  136. M.T. Chaplin, Reaction of lime in sodium aluminate liquors, in Proceedings of Symposia 100th Annual Meeting, ed. by T.G. Edgeworth, New York, 1–4 Mar 1971, Light Metals 1971, (Reprinted in the “Essential Readings in Light Metals, vol. 1, Alumina and Bauxite”, TMS-Wiley, 2013, pp. 202–207)

    Google Scholar 

  137. US 2,992,893 (Patent Date: July 18, 1961), US 3,120,996 (Date of Patent: Feb. 11, 1964), US 3,210,155 (Date of Patent: 5 Oct 1965), US 4,486,393 (Date of Patent: 4 Dec 1984) AU 2004201629 (Date of Patent: 13 July 2006)

    Google Scholar 

  138. S.P. Rosenberg, D.J. Wilson, C.A. Heath, W. Tichbon, Process for the removal of oxalate and/or sulphate from Bayer liquors, Australian Patent, No. 768730 (Date of Patent: 8 Jan 2004)

    Google Scholar 

Download references

Acknowledgements

The Authors are grateful for Robert LaMacchia for his active involvement during the outlining of the Chapter. Special thanks should be emphasized to Steve P. Rosenberg and Peter Smith for their contributions to the Lime Chemistry.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bánvölgyi, G.(., Haneman, B. (2022). Chemical Processing of Bauxite: Alumina and Silica Minerals—Chemistry, Kinetics and Reactor Design. In: Raahauge, B.E., Williams, F.S. (eds) Smelter Grade Alumina from Bauxite. Springer Series in Materials Science, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-030-88586-1_4

Download citation

Publish with us

Policies and ethics