Abstract
Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios.
Keywords
- Monitoring
- Neural networks
- Novelty detection
This is a preview of subscription content, access via your institution.
Buying options





References
Bendale, A., Boult, T.E.: Towards open world recognition. In: CVPR, pp. 1893–1902. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298799
Bendale, A., Boult, T.E.: Towards open set deep networks. In: CVPR, pp. 1563–1572. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.173
Bendre, N., Terashima-Marín, H., Najafirad, P.: Learning from few samples: a survey. CoRR abs/2007.15484 (2020). https://arxiv.org/abs/2007.15484
Chen, Y., Cheng, C., Yan, J., Yan, R.: Monitoring object detection abnormalities via data-label and post-algorithm abstractions. CoRR abs/2103.15456 (2021). https://arxiv.org/abs/2103.15456
Cheng, C., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation patterns. In: DATE, pp. 300–303. IEEE (2019). https://doi.org/10.23919/DATE.2019.8714971
Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: IJCNN, pp. 2921–2926. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966217
Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994). https://doi.org/10.1007/BF00993277
Das, S., Wong, W., Dietterich, T.G., Fern, A., Emmott, A.: Incorporating expert feedback into active anomaly discovery. In: ICDM, pp. 853–858. IEEE Computer Society (2016). https://doi.org/10.1109/ICDM.2016.0102
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 1050–1059. JMLR.org (2016). http://proceedings.mlr.press/v48/gal16.html
Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: NeurIPS, pp. 4878–4887 (2017). http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks
Guerriero, S., Caputo, B., Mensink, T.: DeepNCM: deep nearest class mean classifiers. In: ICLR. OpenReview.net (2018). https://openreview.net/forum?id=rkPLZ4JPM
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML. PMLR, vol. 70, pp. 1321–1330. PMLR (2017). http://proceedings.mlr.press/v70/guo17a.html
Gupta, A., Carlone, L.: Online monitoring for neural network based monocular pedestrian pose estimation. In: ITSC, pp. 1–8. IEEE (2020). https://doi.org/10.1109/ITSC45102.2020.9294609
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR. OpenReview.net (2017). https://openreview.net/forum?id=Hkg4TI9xl
Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based monitoring of neural networks. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2433–2440. IOS Press (2020). https://doi.org/10.3233/FAIA200375
Ibrahim, S.H., Nassar, M.: Hack the box: fooling deep learning abstraction-based monitors. CoRR abs/2107.04764 (2021). https://arxiv.org/abs/2107.04764
Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, Springer, Heidelberg (1986). https://doi.org/10.1007/978-1-4757-1904-8
Knorr, E.M., Ng, R.T.: A unified notion of outliers: properties and computation. In: KDD, pp. 219–222. AAAI Press (1997). http://www.aaai.org/Library/KDD/1997/kdd97-044.php
Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, Technical report (2009)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017). https://doi.org/10.1016/j.neucom.2016.12.038
Lloyd, S.P.: Least squares quantization in PCM. Trans. Inf. Theory 28(2), 129–136 (1982). https://doi.org/10.1109/TIT.1982.1056489
Lu, J., Gong, P., Ye, J., Zhang, C.: Learning from very few samples: a survey. CoRR abs/2009.02653 (2020). https://arxiv.org/abs/2009.02653
Mancini, M., Karaoguz, H., Ricci, E., Jensfelt, P., Caputo, B.: Knowledge is never enough: towards web aided deep open world recognition. In: ICRA, pp. 9537–9543. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8793803
Mandelbaum, A., Weinshall, D.: Distance-based confidence score for neural network classifiers. CoRR abs/1709.09844 (2017). http://arxiv.org/abs/1709.09844
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989). http://www.sciencedirect.com/science/article/pii/S0079742108605368
Mensink, T., Verbeek, J.J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013). https://doi.org/10.1109/TPAMI.2013.83
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Networks 113, 54–71 (2019). https://doi.org/10.1016/j.neunet.2019.01.012
Pimentel, M.A.F., Clifton, D.A., Clifton, L.A., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014). https://doi.org/10.1016/j.sigpro.2013.12.026
Rahman, Q.M., Corke, P., Dayoub, F.: Run-time monitoring of machine learning for robotic perception: a survey of emerging trends. IEEE Access 9, 20067–20075 (2021). https://doi.org/10.1109/ACCESS.2021.3055015
Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR, pp. 5533–5542. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.587
Redko, I., Morvant, E., Habrard, A., Sebban, M., Bennani, Y.: Advances in Domain Adaptation Theory. Elsevier (2019)
Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: CVPR, pp. 1401–1409. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298746
Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217
Schultheiss, A., Käding, C., Freytag, A., Denzler, J.: Finding the unknown: novelty detection with extreme value signatures of deep neural activations. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 226–238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_19
Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012). https://doi.org/10.2200/S00429ED1V01Y201207AIM018
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: IJCNN, pp. 1453–1460. IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033395
Sun, R., Lampert, C.H.: KS(conf): a light-weight test if a multiclass classifier operates outside of its specifications. Int. J. Comput. Vis. 128(4), 970–995 (2020). https://doi.org/10.1007/s11263-019-01232-x
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: IROS, pp. 23–30. IEEE (2017). https://doi.org/10.1109/IROS.2017.8202133
Wagstaff, K.L., Lu, S.: Efficient active learning for new domains. In: Workshop on Real World Experiment Design and Active Learning (2020)
Wu, C., Falcone, Y., Bensalem, S.: Customizable reference runtime monitoring of neural networks using resolution boxes. CoRR abs/2104.14435 (2021). https://arxiv.org/abs/2104.14435
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747
Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of vision systems. In: CVPR, pp. 3566–3573. IEEE Computer Society (2014). https://doi.org/10.1109/CVPR.2014.456
Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943–1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579
Zhao, P., Hoi, S.C.H.: OTL: a framework of online transfer learning. In: ICML, pp. 1231–1238. Omnipress (2010). https://icml.cc/Conferences/2010/papers/219.pdf
Acknowledgments
We thank Christoph Lampert and Alex Greengold for fruitful discussions. This research was supported in part by the Simons Institute for the Theory of Computing, the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lukina, A., Schilling, C., Henzinger, T.A. (2021). Into the Unknown: Active Monitoring of Neural Networks. In: Feng, L., Fisman, D. (eds) Runtime Verification. RV 2021. Lecture Notes in Computer Science(), vol 12974. Springer, Cham. https://doi.org/10.1007/978-3-030-88494-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-88494-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88493-2
Online ISBN: 978-3-030-88494-9
eBook Packages: Computer ScienceComputer Science (R0)