Skip to main content

Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption in Standard Model

  • 1235 Accesses

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12973)

Abstract

Proxy re-encryption (PRE), introduced by Blaze, Bleumer, and Strauss at EUROCRYPT 98, offers delegation of decryption rights, i.e., it securely enables the re-encryption of ciphertexts from one key to another, without relying on trusted parties. PRE allows a semi-trusted third party termed as a “proxy” to securely divert ciphertexts of a user (delegator) to another user (delegatee) without revealing any information about the underlying messages to the proxy. Attribute-based proxy re-encryption (ABPRE) generalizes PRE by allowing such transformation of ciphertext under an access-policy into another ciphertext under a new access policy. Such a primitive facilitates fine-grained secure sharing of encrypted data in the cloud.

    In order to capture the application goals of PRE, the security model of (Attribute-based) PRE evolves over the decades. There are two well-established notions of security for (Attribute-based) proxy re-encryption schemes: security under chosen-plaintext attacks (CPA) and security under chosen-ciphertext attacks (CCA). Both definitions aim to address the security that the delegator enjoys against both proxy and delegatee. Recently, at PKC 19, Cohen points out that CPA security guarantees much less security against delegatee than was previously understood. In particular, CPA security does not prevent delegatee from learning delegator’s secret key after receiving a single honestly re-encrypted ciphertext. To circumvent this issue, Cohen proposes security against honest re-encryption attacks (HRA) to strengthen CPA security that better captures the goals of PRE, and shows that two existing proxy re-encryption schemes are HRA-secure, one of them is quantum-safe, which is constructed from fully homomorphic encryption scheme (FHE).

    In this work, we advance the studies on HRA-secure PRE for the ABE setting. We first formalize the definition of HRA-secure Key-Policy ABPRE (\(\mathsf {KP\hbox {-}ABPRE}\)) and propose a construction, which is quantum-safe and secure in the standard model based on the hardness of the \(\mathsf {LWE}\). As an important consequence, we have the first quantum-safe HRA-secure Identity-based PRE. Moreover, the underlying PRE of the proposed \(\mathsf {KP\hbox {-}ABPRE}\) is the first quantum-safe HRA-secure PRE without FHE.

Keywords

  • Proxy Re-Encryption
  • (Key-Policy) Attribute-based Encryption
  • Learning with errors
  • HRA security

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88428-4_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-88428-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Notes

  1. 1.

    It may possible to prove HRA security for the Identity-based constructions by Dutta et al. [15, 16] with appropriate modifications.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    CrossRef  MATH  Google Scholar 

  2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    CrossRef  Google Scholar 

  3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)

    Google Scholar 

  4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)

    CrossRef  Google Scholar 

  5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

    CrossRef  Google Scholar 

  6. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    CrossRef  Google Scholar 

  7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012)

    Google Scholar 

  8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584 (2013)

    Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_13

    CrossRef  Google Scholar 

  10. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19

    CrossRef  MATH  Google Scholar 

  11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: EUROCRYPT 2010, pp. 523–552 (2010)

    Google Scholar 

  12. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_23

    CrossRef  Google Scholar 

  13. Cohen, A.: What about bob? The inadequacy of CPA security for proxy reencryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_10

    CrossRef  Google Scholar 

  14. Döttling, N., Nishimaki, R.: Universal proxy re-encryption. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 512–542. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_19

    CrossRef  Google Scholar 

  15. Dutta, P., Susilo, W., Duong, D.H., Baek, J., Roy, P.S.: Identity-based unidirectional proxy re-encryption in standard model: a lattice-based construction. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 245–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65299-9_19

    CrossRef  Google Scholar 

  16. Dutta, P., Susilo, W., Duong, D.H., Roy, P.S.: Collusion-resistant identity-based proxy re-encryption: lattice-based constructions in standard model. Theor. Comput. Sci. 871, 16–29 (2021)

    MathSciNet  CrossRef  Google Scholar 

  17. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 317–346. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_11

    CrossRef  Google Scholar 

  18. Ge, C., Susilo, W., Fang, L., Wang, J., Shi, Y.: A CCA-secure key-policy attribute-based proxy re-encryption in the adaptive corruption model for dropbox data sharing system. Des. Codes Crypt. 86(11), 2587–2603 (2018)

    MathSciNet  CrossRef  Google Scholar 

  19. Gentry, C.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford university Stanford, Stanford (2009)

    Google Scholar 

  20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    CrossRef  Google Scholar 

  22. Hohenberger, S., Rothblum, G.N., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_13

    CrossRef  Google Scholar 

  23. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7_9

    CrossRef  Google Scholar 

  24. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with delegating capabilities. In: AsiaCCS 2009, pp. 276–286 (2009)

    Google Scholar 

  25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    CrossRef  Google Scholar 

  26. Miki, M., Hayashi, E., Shingai, H.: Highly reliable and highly secure online storage platform supporting “timeon’’ regza cloud service. Toshiba Rev. 68(5), 25–27 (2013)

    Google Scholar 

  27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC 2009, pp. 333–342 (2009)

    Google Scholar 

  28. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption for publish/subscribe systems. ACM Trans. Priv. Secur. 20(4), 1–31 (2017)

    CrossRef  Google Scholar 

  29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  30. Smith, T.: Dvd jon: buy drm-less tracks from apple itunes (2005). https://www.theregister.co.uk/2005/03/18/itunes_pymusique/

Download references

Acknowledgement

This work is partially supported by the Australian Research Council Linkage Project LP190100984

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Susilo, W., Dutta, P., Duong, D.H., Roy, P.S. (2021). Lattice-Based HRA-secure Attribute-Based Proxy Re-Encryption in Standard Model. In: Bertino, E., Shulman, H., Waidner, M. (eds) Computer Security – ESORICS 2021. ESORICS 2021. Lecture Notes in Computer Science(), vol 12973. Springer, Cham. https://doi.org/10.1007/978-3-030-88428-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88428-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88427-7

  • Online ISBN: 978-3-030-88428-4

  • eBook Packages: Computer ScienceComputer Science (R0)