Skip to main content

Genetic Algorithm Assisted State-Recovery Attack on Round-Reduced Xoodyak

  • 1134 Accesses

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12973)

Abstract

Genetic algorithm (GA) has led to significant improvements in many challenging tasks, including combinatorial optimization, signal processing, and artificial life. It shows enormous potential for cryptanalysis. This paper designed a heuristic algorithm based on GA for the known-plaintext attack on round-reduced Xoodyak, a finalist of the NIST lightweight cryptography project, under the nonce-respecting setting. To accomplish this, we firstly remodel Xoodoo, the underlying permutation of Xoodyak, portraying it as a function whose input and output are continuous variables defined in [0, 1], representing the likelihood that each bit is equal to 1 and describing the goal of cryptanalysis as an objective function optimized with GA secondly. Consequently, we can abstract the potential information of the unknown state of Xoodyak from the results given by GA. Compared with traditional methods, ours requires less knowledge about complex cryptanalysis as GA can work well with lower complexity, both in time complexity and data complexity, and can be carried out under more restricted conditions.

Keywords

  • Xoodyak
  • Xoodoo
  • Genetic algorithm
  • AEAD
  • Known-plaintext attack

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88428-4_13
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-88428-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_2

    CrossRef  Google Scholar 

  2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    CrossRef  Google Scholar 

  3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

    CrossRef  Google Scholar 

  4. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authenticated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_5

    CrossRef  Google Scholar 

  5. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Transactions on Symmetric Cryptology 2018, 1–38 (2018). https://doi.org/10.13154/tosc.v2018.i4.1-38

  6. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology, pp. 60–87 (2020). https://doi.org/10.13154/tosc.v2020.iS1.60-87

  7. Ding, Y., Shi, Y., Wang, A., Wang, Y., Zhang, G.: Block-oriented correlation power analysis with bitwise linear leakage: an artificial intelligence approach based on genetic algorithms. Futur. Gener. Comput. Syst. 106, 34–42 (2020). https://doi.org/10.1016/j.future.2019.12.046

    CrossRef  Google Scholar 

  8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight Authenticated Encryption and Hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-09398-9

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Geltink, G.: Concealing Ketje: a lightweight PUF-based privacy preserving authentication protocol. In: Bogdanov, A. (ed.) LightSec 2016. LNCS, vol. 10098, pp. 128–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55714-4_9

    CrossRef  MATH  Google Scholar 

  10. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    CrossRef  Google Scholar 

  11. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992). https://doi.org/10.7551/mitpress/1090.001.0001

  12. Hou, B., Li, Y., Zhao, H., Wu, B.: Linear attack on round-reduced DES using deep learning. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 131–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_7

    CrossRef  Google Scholar 

  13. Li, Z., Dong, X., Bi, W., Jia, K., Wang, X., Meier, W.: New conditional cube attack on Keccak keyed modes. IACR Transactions on Symmetric Cryptology, pp. 94–124 (2019). https://doi.org/10.13154/tosc.v2019.i2.94-124

  14. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic attacks on round-reduced Keccak/Xoodoo. Cryptology ePrint Archive, Report 2020/346 (2020). https://eprint.iacr.org/2020/346

  15. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspective. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 741–770. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_26

    CrossRef  Google Scholar 

  16. Morawiecki, P., et al.: ICEPOLE: high-speed, hardware-oriented authenticated encryption. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 392–413. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_22

    CrossRef  Google Scholar 

  17. Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using MILP. IACR Transactions on Symmetric Cryptology, pp. 182–214 (2018). https://doi.org/10.13154/tosc.v2018.i3.182-214

  18. Wang, A., Li, Y., Ding, Y., Zhu, L., Wang, Y.: Efficient framework for genetic-algorithm-based correlation power analysis. Cryptology ePrint Archive, Report 2021/179 (2021). https://eprint.iacr.org/2021/179

  19. Wetzels, J., Bokslag, W.: Sponges and engines: an introduction to Keccak and Keyak. Cryptology ePrint Archive, Report 2016/028 (2016). https://eprint.iacr.org/2016/028

  20. Zhang, Z., Wu, L., Wang, A., Mu, Z., Zhang, X.: A novel bit scalable leakage model based on genetic algorithm. Secur. Commun. Netw. 8(18), 3896–3905 (2015). https://doi.org/10.1002/sec.1308

    CrossRef  Google Scholar 

  21. Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W.: Practical key-recovery attacks on round-reduced Ketje Jr, Xoodoo-AE and Xoodyak. Comput. J. 63(8), 1231–1246 (2020). https://doi.org/10.1093/comjnl/bxz152

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments and suggestions, the editors for shepherding this final version of the paper. This paper is supported by the National Natural Science Foundation of China (Grants No. 61672330, 62071280, 61802235) and the Natural Science Foundation of Shandong Province (Grants No. ZR2020KF011, ZR2020MF056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhang, W., Shi, H. (2021). Genetic Algorithm Assisted State-Recovery Attack on Round-Reduced Xoodyak. In: Bertino, E., Shulman, H., Waidner, M. (eds) Computer Security – ESORICS 2021. ESORICS 2021. Lecture Notes in Computer Science(), vol 12973. Springer, Cham. https://doi.org/10.1007/978-3-030-88428-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88428-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88427-7

  • Online ISBN: 978-3-030-88428-4

  • eBook Packages: Computer ScienceComputer Science (R0)