Skip to main content

Towards Neural Schema Alignment for OpenStreetMap and Knowledge Graphs

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12922)


OpenStreetMap (OSM) is one of the richest, openly available sources of volunteered geographic information. Although OSM includes various geographical entities, their descriptions are highly heterogeneous, incomplete, and do not follow any well-defined ontology. Knowledge graphs can potentially provide valuable semantic information to enrich OSM entities. However, interlinking OSM entities with knowledge graphs is inherently difficult due to the large, heterogeneous, ambiguous, and flat OSM schema and the annotation sparsity. This paper tackles the alignment of OSM tags with the corresponding knowledge graph classes holistically by jointly considering the schema and instance layers. We propose a novel neural architecture that capitalizes upon a shared latent space for tag-to-class alignment created using linked entities in OSM and knowledge graphs. Our experiments aligning OSM datasets for several countries with two of the most prominent openly available knowledge graphs, namely, Wikidata and DBpedia, demonstrate that the proposed approach outperforms the state-of-the-art schema alignment baselines by up to 37% points F1-score. The resulting alignment facilitates new semantic annotations for over 10 million OSM entities worldwide, which is over a 400% increase compared to the existing annotations.


  • OpenStreetMap
  • Knowledge graph
  • Neural schema alignment

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

    OSM “How to map a”:

  2. 2.

    GitHub repository:

  3. 3.

    OSM taginfo:

  4. 4.

    OSM wiki:

  5. 5.

    Wikidata “OpenStreetMap tag or key” property:

  6. 6.

  7. 7.

    Delftdata GitHub repository:

  8. 8.

    WorldKG knowledge graph:

  9. 9.

  10. 10.

    OAEI evaluation campaigns:


  1. Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2019. In: OM-2019. CEUR Workshop Proceedings, vol. 2536, pp. 46–85 (2019)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).

    CrossRef  Google Scholar 

  3. Bento, A., Zouaq, A., Gagnon, M.: Ontology matching using convolutional neural networks. In: LREC 2020, pp. 5648–5653. ELRA (2020)

    Google Scholar 

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    CrossRef  Google Scholar 

  5. Cappuzzo, R., Papotti, P., Thirumuruganathan, S.: Creating embeddings of heterogeneous relational datasets for data integration tasks. In: SIGMOD 2020, pp. 1335–1349. ACM (2020)

    Google Scholar 

  6. Demidova, E., Oelze, I., Nejdl, W.: Aligning freebase with the YAGO ontology. In: CIKM 2013, pp. 579–588. ACM (2013)

    Google Scholar 

  7. Doan, A., Madhavan, J., Domingos, P.M., Halevy, A.Y.: Ontology matching: a machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 385–404. Springer, Heidelberg (2004).

    CrossRef  Google Scholar 

  8. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV 2013. IEEE (2013)

    Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 59:1–59:35 (2016)

    Google Scholar 

  10. Gottschalk, S., Demidova, E.: EventKG - the hub of event knowledge on the web - and biographical timeline generation. Semantic Web 10(6), 1039–1070 (2019)

    CrossRef  Google Scholar 

  11. Jiménez-Ruiz, E., Agibetov, A., Chen, J., Samwald, M., Cross, V.: Dividing the ontology alignment task with semantic embeddings and logic-based modules. In: ECAI 2020. FAIA, vol. 325, pp. 784–791. IOS Press (2020)

    Google Scholar 

  12. Lample, G., Conneau, A., Ranzato, M., Denoyer, L., Jégou, H.: Word translation without parallel data. In: ICLR 2018. (2018)

    Google Scholar 

  13. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB 2001, pp. 49–58. Morgan Kaufmann (2001)

    Google Scholar 

  14. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: ICDE 2002 (2002)

    Google Scholar 

  15. Neis, P.: OSMstats. Accessed 10 Apr 2021

  16. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link discovery frameworks. Semantic Web 8(3), 419–436 (2017)

    CrossRef  Google Scholar 

  17. Ngo, D.H., Bellahsene, Z., Todorov, K.: Opening the black box of ontology matching. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 16–30. Springer, Heidelberg (2013).

    CrossRef  Google Scholar 

  18. Ngomo, A.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: IJCAI 2011, pp. 2312–2317. IJCAI/AAAI (2011)

    Google Scholar 

  19. Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K., Heaven, R.: Ontology alignment based on word embedding and random forest classification. In: ECML PKDD (2018)

    Google Scholar 

  20. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

    CrossRef  Google Scholar 

  21. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: ISWC 2013 (2013)

    Google Scholar 

  22. Qiu, L., Yu, J., Pu, Q., Xiang, C.: Knowledge entity learning and representation for ontology matching based on deep neural networks. Clust. Comput. 20, 969–977 (2017)

    CrossRef  Google Scholar 

  23. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    CrossRef  Google Scholar 

  24. Sherif, M.A., Ngonga Ngomo, A.-C., Lehmann, J.: Wombat – a generalization approach for automatic link discovery. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 103–119. Springer, Cham (2017).

    CrossRef  Google Scholar 

  25. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: a core for a web of spatial open data. Semantic Web 3(4), 333–354 (2012)

    CrossRef  Google Scholar 

  26. Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020).

    CrossRef  Google Scholar 

  27. Tempelmeier, N., Demidova, E.: Linking OpenStreetMap with knowledge graphs - link discovery for schema-agnostic volunteered geographic information. Future Gener. Comput. Syst. 116, 349–364 (2021)

    CrossRef  Google Scholar 

  28. Unal, O., Afsarmanesh, H.: Using linguistic techniques for schema matching. In: ICSOFT 2006, pp. 115–120. INSTICC Press (2006)

    Google Scholar 

  29. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - A link discovery framework for the web of data. In: LDOW 2009. CEUR, vol. 538. (2009)

    Google Scholar 

  30. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    CrossRef  Google Scholar 

  31. Xiang, C., Jiang, T., Chang, B., Sui, Z.: ERSOM: a structural ontology matching approach using automatically learned entity representation. In: EMNLP (2015)

    Google Scholar 

  32. Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation: a survey. ACM Trans. Intell. Syst. Technol. 11(2), 13:1–13:35 (2020)

    Google Scholar 

Download references


This work was partially funded by DFG, German Research Foundation (“WorldKG”, DE 2299/2-1), BMBF, Germany (“Simple-ML”, 01IS18054) and BMWi, Germany (“d-E-mand”, 01ME19009B).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alishiba Dsouza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dsouza, A., Tempelmeier, N., Demidova, E. (2021). Towards Neural Schema Alignment for OpenStreetMap and Knowledge Graphs. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88360-7

  • Online ISBN: 978-3-030-88361-4

  • eBook Packages: Computer ScienceComputer Science (R0)