Abstract
OpenStreetMap (OSM) is one of the richest, openly available sources of volunteered geographic information. Although OSM includes various geographical entities, their descriptions are highly heterogeneous, incomplete, and do not follow any well-defined ontology. Knowledge graphs can potentially provide valuable semantic information to enrich OSM entities. However, interlinking OSM entities with knowledge graphs is inherently difficult due to the large, heterogeneous, ambiguous, and flat OSM schema and the annotation sparsity. This paper tackles the alignment of OSM tags with the corresponding knowledge graph classes holistically by jointly considering the schema and instance layers. We propose a novel neural architecture that capitalizes upon a shared latent space for tag-to-class alignment created using linked entities in OSM and knowledge graphs. Our experiments aligning OSM datasets for several countries with two of the most prominent openly available knowledge graphs, namely, Wikidata and DBpedia, demonstrate that the proposed approach outperforms the state-of-the-art schema alignment baselines by up to 37% points F1-score. The resulting alignment facilitates new semantic annotations for over 10 million OSM entities worldwide, which is over a 400% increase compared to the existing annotations.
Keywords
- OpenStreetMap
- Knowledge graph
- Neural schema alignment
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
OSM “How to map a”: https://wiki.openstreetmap.org/wiki/How_to_map_a.
- 2.
GitHub repository: https://github.com/alishiba14/NCA-OSM-to-KGs.
- 3.
OSM taginfo: https://taginfo.openstreetmap.org/tags.
- 4.
OSM wiki: https://wiki.openstreetmap.org/wiki/.
- 5.
Wikidata “OpenStreetMap tag or key” property: https://www.wikidata.org/wiki/Property:P1282.
- 6.
- 7.
Delftdata GitHub repository: https://github.com/delftdata/valentine.
- 8.
WorldKG knowledge graph: http://www.worldkg.org.
- 9.
- 10.
OAEI evaluation campaigns: http://oaei.ontologymatching.org.
References
Algergawy, A., et al.: Results of the ontology alignment evaluation initiative 2019. In: OM-2019. CEUR Workshop Proceedings, vol. 2536, pp. 46–85 (2019)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Bento, A., Zouaq, A., Gagnon, M.: Ontology matching using convolutional neural networks. In: LREC 2020, pp. 5648–5653. ELRA (2020)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Cappuzzo, R., Papotti, P., Thirumuruganathan, S.: Creating embeddings of heterogeneous relational datasets for data integration tasks. In: SIGMOD 2020, pp. 1335–1349. ACM (2020)
Demidova, E., Oelze, I., Nejdl, W.: Aligning freebase with the YAGO ontology. In: CIKM 2013, pp. 579–588. ACM (2013)
Doan, A., Madhavan, J., Domingos, P.M., Halevy, A.Y.: Ontology matching: a machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 385–404. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_19
Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: ICCV 2013. IEEE (2013)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 59:1–59:35 (2016)
Gottschalk, S., Demidova, E.: EventKG - the hub of event knowledge on the web - and biographical timeline generation. Semantic Web 10(6), 1039–1070 (2019)
Jiménez-Ruiz, E., Agibetov, A., Chen, J., Samwald, M., Cross, V.: Dividing the ontology alignment task with semantic embeddings and logic-based modules. In: ECAI 2020. FAIA, vol. 325, pp. 784–791. IOS Press (2020)
Lample, G., Conneau, A., Ranzato, M., Denoyer, L., Jégou, H.: Word translation without parallel data. In: ICLR 2018. OpenReview.net (2018)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: VLDB 2001, pp. 49–58. Morgan Kaufmann (2001)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: ICDE 2002 (2002)
Neis, P.: OSMstats. https://osmstats.neis-one.org/. Accessed 10 Apr 2021
Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link discovery frameworks. Semantic Web 8(3), 419–436 (2017)
Ngo, D.H., Bellahsene, Z., Todorov, K.: Opening the black box of ontology matching. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 16–30. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_2
Ngomo, A.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: IJCAI 2011, pp. 2312–2317. IJCAI/AAAI (2011)
Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K., Heaven, R.: Ontology alignment based on word embedding and random forest classification. In: ECML PKDD (2018)
Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)
Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: ISWC 2013 (2013)
Qiu, L., Yu, J., Pu, Q., Xiang, C.: Knowledge entity learning and representation for ontology matching based on deep neural networks. Clust. Comput. 20, 969–977 (2017)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)
Sherif, M.A., Ngonga Ngomo, A.-C., Lehmann, J.: Wombat – a generalization approach for automatic link discovery. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 103–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_7
Stadler, C., Lehmann, J., Höffner, K., Auer, S.: LinkedGeoData: a core for a web of spatial open data. Semantic Web 3(4), 333–354 (2012)
Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_34
Tempelmeier, N., Demidova, E.: Linking OpenStreetMap with knowledge graphs - link discovery for schema-agnostic volunteered geographic information. Future Gener. Comput. Syst. 116, 349–364 (2021)
Unal, O., Afsarmanesh, H.: Using linguistic techniques for schema matching. In: ICSOFT 2006, pp. 115–120. INSTICC Press (2006)
Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - A link discovery framework for the web of data. In: LDOW 2009. CEUR, vol. 538. CEUR-WS.org (2009)
Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Xiang, C., Jiang, T., Chang, B., Sui, Z.: ERSOM: a structural ontology matching approach using automatically learned entity representation. In: EMNLP (2015)
Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation: a survey. ACM Trans. Intell. Syst. Technol. 11(2), 13:1–13:35 (2020)
Acknowledgements
This work was partially funded by DFG, German Research Foundation (“WorldKG”, DE 2299/2-1), BMBF, Germany (“Simple-ML”, 01IS18054) and BMWi, Germany (“d-E-mand”, 01ME19009B).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dsouza, A., Tempelmeier, N., Demidova, E. (2021). Towards Neural Schema Alignment for OpenStreetMap and Knowledge Graphs. In: Hotho, A., et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-88361-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88360-7
Online ISBN: 978-3-030-88361-4
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://swsa.semanticweb.org/