Skip to main content

Leveraging Semantic Technologies for Digital Interoperability in the European Railway Domain

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12922)

Abstract

The European Union Agency for Railways is an European authority, tasked with the provision of a legal and technical framework to support harmonized and safe cross-border railway operations throughout the EU. So far, the agency relied on traditional application-centric approaches to support the data exchange among multiple actors interacting within the railway domain. This lead however, to isolated digital environments that consequently added barriers to digital interoperability while increasing the cost of maintenance and innovation. In this work, we show how Semantic Web technologies are leveraged to create a semantic layer for data integration across the base registries maintained by the agency. We validate the usefulness of this approach by supporting route compatibility checks, a highly demanded use case in this domain, which was not available over the agency’s registries before. Our contributions include (i) an official ontology for the railway infrastructure and authorized vehicle types, including 28 reference datasets; (ii) a reusable Knowledge Graph describing the European railway infrastructure; (iii) a cost-efficient system architecture that enables high-flexibility for use case development; and (iv) an open source and RDF native Web application to support route compatibility checks. This work demonstrates how data-centric system design, powered by Semantic Web technologies and Linked Data principles, provides a framework to achieve data interoperability and unlock new and innovative use cases and applications. Based on the results obtained during this work, ERA officially decided to make Semantic Web and Linked Data-based approaches, the default setting for any future development of the data, registers and specifications under the agency’s remit for data exchange mandated by the EU legal framework. The next steps, which are already underway, include further developing and bringing these solutions to a production-ready state.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88361-4_38
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-88361-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    ERA is the European authority for cross-border rail traffic in Europe: https://www.era.europa.eu/content/era-becomes-european-authority-cross-border-rail-traffic-europe_en.

  2. 2.

    An Infrastructure Manager is defined as any body or firm responsible in particular for establishing, managing and maintaining railway infrastructure, including traffic management, control-command and signalling.

  3. 3.

    A Railway Undertaking is defined as any public or private licensed undertaking, the principal business of which is to provide services for the transport of goods and/or passengers by rail with a requirement that the undertaking ensure traction.

  4. 4.

    “A base registry is a trusted and authoritative source of information which can and should be digitally reused by others, where one organisation is responsible and accountable for the collection, use, updating and preservation of information.” [24].

  5. 5.

    Principles of Linked Data: https://www.w3.org/DesignIssues/LinkedData.html.

  6. 6.

    Base registries of ERA: https://www.era.europa.eu/registers_en.

  7. 7.

    http://era.ilabt.imec.be/era-vocabulary/index-en.html.

  8. 8.

    http://era.ilabt.imec.be/.

  9. 9.

    http://era.ilabt.imec.be/test/compatibility-check-demo/.

  10. 10.

    ERA’s roadmap for Linked Data mainstreaming: https://www.era.europa.eu/sites/default/files/agency/docs/decision/decision_n250_annex1_linked_data_en.pdf.

  11. 11.

    https://confluence.rigd-loxia.nl/display/IMSP/IMSpoor+Publicatie+Home.

  12. 12.

    http://www.railtopomodel.org/en/download/irs30100-apr16-7594BCA1524E14224D0.html?file=files/download/RailTopoModel/180416_uic_irs30100.pdf.

  13. 13.

    https://wiki3.railml.org/wiki/Main_Page.

  14. 14.

    https://dataprep.eulynx.eu/2020-10/index.htm.

  15. 15.

    https://ontology.tno.nl/smart-rail/.

  16. 16.

    https://www.era.europa.eu/registers_en.

  17. 17.

    https://www.era.europa.eu/sites/default/files/registers/docs/rinf_schema_en.xsd.

  18. 18.

    See Sect. 1.6 of [22] for a description of railway vie levels.

  19. 19.

    https://docs.stardog.com/archive/7.5.0/query-stardog/path-queries.

  20. 20.

    http://era.ilabt.imec.be/test/compatibility-check-demo/.

  21. 21.

    http://era.ilabt.imec.be/era-vocabulary/index-en.html.

  22. 22.

    https://github.com/julianrojas87/era-vocabulary/tree/master.

  23. 23.

    http://publications.europa.eu/resource/authority/country.

  24. 24.

    http://era.ilabt.imec.be/era-vocabulary/era-skos#.

  25. 25.

    https://github.com/julianrojas87/era-data-mappings.

  26. 26.

    https://github.com/RMLio/yarrrml-parser.

  27. 27.

    https://github.com/RMLio/rmlmapper-java.

  28. 28.

    https://drive.google.com/file/d/1KofPzYx2ovgAz85rLuO5J98SEs2BjWbO/view?usp=sharing.

  29. 29.

    http://era.ilabt.imec.be/sparql.

  30. 30.

    https://linked.ec-dataplatform.eu/sparql?default-graph-uri=https%3A%2F%2Flinked.ec-dataplatform.eu%2Fera.

  31. 31.

    https://github.com/julianrojas87/era-ldf/.

  32. 32.

    https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames.

  33. 33.

    https://github.com/julianrojas87/era-compatibility-check.

  34. 34.

    https://pgrouting.org/.

  35. 35.

    https://docs.stardog.com/archive/7.5.0/query-stardog/path-queries.

  36. 36.

    https://neo4j.com/docs/graph-data-science/current/algorithms/dijkstra-source-target/.

  37. 37.

    https://w3id.org/ldes/specification.

  38. 38.

    https://www.era.europa.eu/sites/default/files/agency/docs/decision/decision_n250_annex1_linked_data_en.pdf.

References

  1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    CrossRef  Google Scholar 

  2. Bischof, S., Schenner, G.: Towards a railway topology ontology to integrate and query rail data silos. In: SEMWEB (2020)

    Google Scholar 

  3. Chaudhuri, S., Weikum, G.: Rethinking database system architecture: Towards a self-tuning RISC-style database system. In: Proceedings of the 26th International Conference on Very Large Data Bases, VLDB 2000, pp. 1–10. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  4. Council of European Union: Council regulation (EU) no 2008/57 (2008). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0057

  5. Council of European Union: Council regulation (EU) no 2011/65 (2011). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32011L0065

  6. Council of European Union: Council regulation (EU) no 2012/34 (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012L0034

  7. Council of European Union: Council regulation (EU) no 2016/796 (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0796

  8. Council of European Union: Council regulation (EU) no 2016/797 (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016L0797

  9. Council of European Union: Council regulation (EU) no 2018/1614 (2018). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.268.01.0053.01.ENG&toc=OJ:L:2018:268:TOC

  10. Council of European Union: Council regulation (EU) no 2019/773 (2019). https://eur-lex.europa.eu/eli/reg_impl/2019/773/oj

  11. Delling, D., Goldberg, A., Pajor, T., Werneck, R.F.: Customizable route planning in road networks. Transp. Sci. 51, 566–591 (2017)

    CrossRef  Google Scholar 

  12. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. ACM J. Exp. Algorithmics 21, 1–49 (2016)

    MathSciNet  CrossRef  Google Scholar 

  13. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web. CEUR Workshop Proceedings, vol. 1184, April 2014

    Google Scholar 

  14. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. Internet Technol. 2(2), 115–150 (2002)

    CrossRef  Google Scholar 

  15. Garijo, D., et al.: Zack-83: dgarijo/Widoco: WIDOCO 1.4.15\(\_1\) (pre-release): Namespace prefixes fixes and WebVowl update, December 2020

    Google Scholar 

  16. Gély, L., Dessagne, G., Pesneau, P., Vanderbeck, F.: A multi scalable model based on a connexity graph representation. WIT Trans. Built Environ. 114, 193–204 (2010)

    CrossRef  Google Scholar 

  17. Gubichev, A., Neumann, T.: Path query processing on very large RDF graphs. In: WebDB (2011)

    Google Scholar 

  18. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    CrossRef  Google Scholar 

  19. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space (2011). http://linkeddatabook.com/editions/1.0/

  20. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at your fingertips! In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 213–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_40

    CrossRef  Google Scholar 

  21. Hlubuček, A.: Railtopomodel and railML 3 in overall context. Acta Polytechnica CTU Proceedings 11, 16 (2017). https://doi.org/10.14311/APP.2017.11.0016

  22. RailTopoModel - Railway Infrastructure Topological Model. Standard, International Union of Railways, Paris, FR (2016)

    Google Scholar 

  23. Morris, C., Easton, J., Roberts, C.: Applications of linked data in the rail domain. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 35–41 (2014)

    Google Scholar 

  24. Publications Office of the European Union: New European interoperability framework: promoting seamless services and data flows for European public administrations (2017). https://ec.europa.eu/isa2/sites/default/files/eif_brochure_final.pdf

  25. Savenkov, V., Mehmood, Q., Umbrich, J., Polleres, A.: Counting to k or how sparql1.1 property paths can be extended to top-k path queries. In: Proceedings of the 13th International Conference on Semantic Systems, Semantics 2017, pp. 97–103. Association for Computing Machinery, New York (2017)

    Google Scholar 

  26. Tutcher, J., Easton, J., Roberts, C.: Enabling data integration in the rail industry using RDF and OWL: the RaCoOn ontology. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civil Eng. 3, F4015001 (2017)

    Google Scholar 

  27. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de Walle, R.: Web-scale querying through Linked Data Fragments. In: Bizer, C., Heath, T., Auer, S., Berners-Lee, T. (eds.) Proceedings of the 7\(^{\rm th}\) Workshop on Linked Data on the Web. CEUR Workshop Proceedings, vol. 1184, April 2014

    Google Scholar 

  28. Verstichel, S., et al.: Efficient data integration in the railway domain through an ontology-based methodology. Transp. Res. Part C Emerging Technol. 19(4), 617–643 (2011)

    CrossRef  Google Scholar 

  29. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11), 712–716 (1971)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to ProRail, SNCF, BANE NOR, EIM, UIP, CEDEX, RailML, EULYNX, the Publications Office of the EU and the ELISE action team for providing us with their invaluable data, expertise and feedback to make this work possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julián Andrés Rojas , Dylan Van Assche , Pieter Colpaert or Ruben Verborgh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rojas, J.A. et al. (2021). Leveraging Semantic Technologies for Digital Interoperability in the European Railway Domain. In: , et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88361-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88360-7

  • Online ISBN: 978-3-030-88361-4

  • eBook Packages: Computer ScienceComputer Science (R0)