Abstract
Knowledge graph (KG) embedding models have emerged as powerful means for KG completion. To learn the representation of KGs, entities and relations are projected in a low-dimensional vector space so that not only existing triples in the KG are preserved but also new triples can be predicted. Embedding models might learn a good representation of the input KG, but due to the nature of machine learning approaches, they often lose the semantics of entities and relations, which might lead to nonsensical predictions. To address this issue we propose to improve the accuracy of embeddings using ontological reasoning. More specifically, we present a novel iterative approach ReasonKGE that identifies dynamically via symbolic reasoning inconsistent predictions produced by a given embedding model and feeds them as negative samples for retraining this model. In order to address the scalability problem that arises when integrating ontological reasoning into the training process, we propose an advanced technique to generalize the inconsistent predictions to other semantically similar negative samples during retraining. Experimental results demonstrate the improvements in accuracy of facts produced by our method compared to the state-of-the-art.
This is a preview of subscription content, access via your institution.
Buying options


Notes
- 1.
- 2.
- 3.
Available at https://github.com/nitishajain/ReasonKGE.
- 4.
For each triple the subject (resp. object) is randomly perturbed to obtain m samples [9].
References
Ahrabian, K., Feizi, A., Salehi, Y., Hamilton, W.L., Bose, A.J.: Structure-aware negative sampling in knowledge graphs. EMNLP 2020, 6093–6101 (2020)
Alam, M.M., Jabeen, H., Ali, M., Mohiuddin, K., Lehmann, J.: Affinity dependent negative sampling for knowledge graph embeddings. In: (DL4KG2020) - (ESWC 2020) (2020)
Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. CoRR abs/1401.3487 (2014)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: a nucleus for a web of open data. In: ISWC, pp. 722–735 (2007)
Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Hb on Ontology, pp. 21–43 (2009)
Bianchi, F., Rossiello, G., Costabello, L., Palmonari, M., Minervini, P.: Knowledge graph embeddings and explainable AI. In: Tiddi, I., Lécué, F., Hitzler, P. (eds.) KGs for XAI: Foundations, Applications and Challenges, vol. 47, pp. 49–72. IOS Press (2020)
Bienvenu, M.: A short survey on inconsistency handling in ontology-mediated query answering. Künstliche Intell. 34(4), 443–451 (2020)
Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-agnostic query rewriting in SPARQL 1.1. In: ISWC, pp. 584–600 (2014)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS, pp. 2787–2795 (2013)
Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. NAACL-HLT 2018, 1470–1480 (2018)
d’Amato, C., Quatraro, N.F., Fanizzi, N.: Injecting background knowledge into embedding models for predictive tasks on knowledge graphs. In: ESWC, to appear (2021)
Dash, S., Gliozzo, A.: Distributional negative sampling for knowledge base completion. CoRR abs/1908.06178 (2019)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)
Garg, D., Ikbal, S., Srivastava, S.K., Vishwakarma, H., Karanam, H.P., Subramaniam, L.V.: Quantum embedding of knowledge for reasoning. In: NeurIPS, pp. 5595–5605 (2019)
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2 reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)
Glimm, B., Kazakov, Y., Liebig, T., Tran, T.K., Vialard, V.: ISWC, pp. 180–195 (2014)
Glimm, B., Kazakov, Y., Tran, T.: Ontology materialization by abstraction refinement in horn SHOIF. In: AAAI, pp. 1114–1120 (2017)
Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005)
Hao, J., Chen, M., Yu, W., Sun, Y., Wang, W.: Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts. In: KDD, pp. 1709–1719 (2019)
Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies. In: Scalable Uncertainty Management, pp. 124–137 (2009)
Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in knowledge graphs. CoRR abs/1708.06816 (2017). http://arxiv.org/abs/1708.06816
Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In: ISWC, pp. 640–655 (2015)
Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)
Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.: MMKG: multi-modal knowledge graphs. In: ESWC, pp. 459–474 (2019)
Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for regularising neural link predictors. In: UAI (2017)
Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 web ontology language direct semantics (Second Edition). Tech. rep. (2012). https://www.w3.org/TR/owl-direct-semantics/
Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)
Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE – more than just adding a cherry on top. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 180–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_11
Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on training knowledge graph embeddings. In: ICLR (2020)
Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS. pp. 926–934 (2013)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)
Tran, T., Gad-Elrab, M.H., Stepanova, D., Kharlamov, E., Strötgen, J.: Fast computation of explanations for inconsistency in large-scale KGS. In: WWW, vol. 2020, pp. 2613–2619 (2020)
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)
Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge representation learning. In: AAAI, pp. 2005–2012 (2018)
Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)
Wiharja, K., Pan, J.Z., Kollingbaum, M.J., Deng, Y.: Schema aware iterative knowledge graph completion. J. Web Semant. 65, 100616 (2020)
Zhang, J., Chen, B., Zhang, L., Ke, X., Ding, H.: Neural-symbolic reasoning on knowledge graphs. CoRR abs/2010.05446 (2020)
Zhang, Y., Yao, Q., Chen, L.: Efficient, simple and automated negative sampling for knowledge graph embedding. CoRR abs/2010.14227 (2020), https://arxiv.org/abs/2010.14227
Zhang, Y., Yao, Q., Shao, Y., Chen, L.: Nscaching: simple and efficient negative sampling for knowledge graph embedding. In: ICDE, pp. 614–625 (2019)
Ziegler, K., et al.: Injecting semantic background knowledge into neural networks using graph embeddings. In: 26th IEEE, WETICE, pp. 200–205 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jain, N., Tran, TK., Gad-Elrab, M.H., Stepanova, D. (2021). Improving Knowledge Graph Embeddings with Ontological Reasoning. In: , et al. The Semantic Web – ISWC 2021. ISWC 2021. Lecture Notes in Computer Science(), vol 12922. Springer, Cham. https://doi.org/10.1007/978-3-030-88361-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-88361-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88360-7
Online ISBN: 978-3-030-88361-4
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://swsa.semanticweb.org/