Skip to main content

Cancer Stem Cells in the Head and Neck Cancers

  • 223 Accesses

Abstract

Cancer stem cells (CSCs) have been identified in many cancer types, including head and neck cutaneous squamous cell carcinoma and malignant melanoma. These CSCs divide asymmetrically, giving rise to non-tumourigenic cancer cells that form the bulk of the tumour and identical CSCs that are highly tumourigenic, resist conventional therapies and are responsible for loco-regional recurrence and distant metastasis. Current cancer treatments target rapidly dividing cancer cells, but not CSCs, which are responsible for loco-regional recurrence and metastasis that cause the majority of cancer-related deaths. The microenvironment is critical in regulating CSCs with the renin-angiotensin system (RAS) playing a vital role. The RAS consists of multiple components, its bypass loops that provide redundancies and converging signalling pathways that provide crosstalk. A novel strategy for cancer treatment is targeting CSCs by regulating the RAS and its related pathways, by a system-wide approach using a combination of low-cost commonly available medications.

Keywords

  • Skin cancer
  • Malignant melanoma
  • Squamous cell carcinoma
  • Cancer stem cells
  • Circulating tumour cells
  • Tumour microenvironment
  • Metastasis
  • Renin-angiotensin system

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88334-8_2
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-88334-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016;95(1 Suppl 1):S20–5. https://doi.org/10.1097/md.0000000000004766.

    CAS  CrossRef  Google Scholar 

  2. Perryman SV, Sylvester KG. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells. J Mol Med. 2006;10(2):292–308.

    CAS  Google Scholar 

  3. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen YH. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7(1):1.

    PubMed Central  CrossRef  CAS  Google Scholar 

  6. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007;3(1):7–17.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Furth J, Kahn MC, Breedis C. The transmission of leukemia of mice with a single cell. Am J Cancer. 1937;31(2):276.

    Google Scholar 

  9. Belanger LF, Leblond CP. A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology. 1946;39(1):8–13.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Clermont Y, Leblond CP. Renewal of spermatogonia in the rat. Am J Anat. 1953;93(3):475–501.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Kleinsmith LJ, Pierce GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.

    CAS  PubMed  Google Scholar 

  12. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 1988;48(8):1996–2004.

    CAS  PubMed  Google Scholar 

  14. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58(1):267–84.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Kilmister EJ, Patel J, van Schaijik B, Bockett N, Brasch HD, Paterson E, et al. Cancer stem cell subpopulations are present within metastatic head and neck cutaneous squamous cell carcinoma. Front Oncol. 2020;10:1091.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Yoganandarajah V, Patel J, van Schaijik B, Bockett N, Brasch HD, Paterson E, et al. Identification of cancer stem cell subpopulations in head and neck metastatic malignant melanoma. Cell. 2020;9(2):324.

    CAS  CrossRef  Google Scholar 

  18. Koh SP, Brasch HD, de Jongh J, Itinteang T, Tan ST. Cancer stem cell subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma. Heliyon. 2019;5(8):e02257.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Bai X, Zhou Y, Chen P, Yang M, Xu J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J Cell Biochem. 2018;119(2):2179–88.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Parmiani G. Melanoma cancer stem cells: markers and functions. Cancers. 2016;8(3):34.

    PubMed Central  CrossRef  CAS  Google Scholar 

  21. Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol. 2017;232(8):2008–18.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Buta C, David R, Dressel R, Emgård M, Fuchs C, Gross U, et al. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res. 2013;11(1):552–62.

    PubMed  CrossRef  Google Scholar 

  23. Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury. Cell Transplant. 2013;22(4):571–617.

    PubMed  CrossRef  Google Scholar 

  24. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg. 2016;3:21.

    PubMed  PubMed Central  Google Scholar 

  28. Baillie R, Tan ST, Itinteang T. Cancer stem cells in oral cavity squamous cell carcinoma: a review. Front Oncol. 2017;7:112.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Wang L, Zuo X, Xie K, Wei D. The role of CD44 and cancer stem cells. Methods Mol Biol. 2018;1692:31–42.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25(12):1696–708.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M. CD44 and EpCAM: cancer-initiating cell markers. Curr Mol Med. 2008;8(8):784–804.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Lee HJ, You DD, Choi DW, Choi YS, Kim SJ, Won YS, et al. Significance of CD133 as a cancer stem cell markers focusing on the tumorigenicity of pancreatic cancer cell lines. J Korean Surg Soc. 2011;81(4):263–70.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Raz R, Lee C-K, Cannizzaro LA, d’Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 1999;96(6):2846–51.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Levy DE, Lee C-K. What does Stat3 do? J Clin Invest. 2002;109(9):1143–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Takeda K, Akira S. Multi-functional roles of Stat3 revealed by conditional gene targeting. Arch Immunol Ther Exp. 2001;49(4):279.

    CAS  Google Scholar 

  36. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100(7):4138–43.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Zhao X, Sun X, Li X-l. Expression and clinical significance of STAT3, P-STAT3, and VEGF-C in small cell lung cancer. Asian Pac J Cancer Prev. 2012;13(6):2873–7.

    PubMed  CrossRef  Google Scholar 

  38. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12(13):2048–60.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–22.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Baillie R, Itinteang T, Helen HY, Brasch HD, Davis PF, Tan ST. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69(8):742–4.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Yu HH, Featherston T, Tan ST, Chibnall AM, Brasch HD, Davis PF, et al. Characterization of cancer stem cells in moderately differentiated buccal mucosal squamous cell carcinoma. Front Surg. 2016;3:46.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Munro MJ, Wickremesekera SK, Peng L, Marsh RW, Itinteang T, Tan ST. Cancer stem cell subpopulations in primary colon adenocarcinoma. PLoS One. 2019;14(9):e0221963.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Humphries HN, Wickremesekera SK, Marsh RW, Brasch HD, Mehrotra S, Tan ST, et al. Characterization of cancer stem cells in colon adenocarcinoma metastasis to the liver. Front Surg. 2018;4:76.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Cane R, Kennedy-Smith A, Brasch HD, Savage S, Marsh R, Tan ST, Itinteang T. Characterization of cancer stem cells in renal clear cell carcinoma. J Stem Cell Regen Biol. 2019;4:6–16.

    Google Scholar 

  45. Kilmister EJ, van Schaijik B, Bockett N, Brasch HD, Paterson E, et al. Cancer stem cell subpopulations are present within metastatic head and neck cutaneous squamous cell carcinoma. Front Oncol. 2020;10:1091.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Wickremesekera AC, Brasch HD, Lee VM, Davis PF, Woon K, Johnson R, et al. Expression of cancer stem cell markers in metastatic melanoma to the brain. J Clin Neurosci. 2019;60:112–6.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Tan DC, Roth IM, Wickremesekera AC, Davis PF, Kaye AH, Mantamadiotis T, et al. Therapeutic targeting of cancer stem cells in human glioblastoma by manipulating the renin-angiotensin system. Cell. 2019;8(11):1364.

    CAS  CrossRef  Google Scholar 

  48. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108(19):7950.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: the root of tumor recurrence and metastases. Semin Cancer Biol. 2017;44:10–24.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  51. Lee C-K, Jeong S-H, Jang C, Bae H, Kim YH, Park I, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363(6427):644.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Bernards R, Weinberg RA. A progression puzzle. Nature. 2002;418(6900):823.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Vanharanta S, Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–21.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  55. Doherty MR, Smigiel JM, Junk DJ, Jackson MW. Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel). 2016;8(1):8.

    CrossRef  CAS  Google Scholar 

  56. Brabletz T. EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell. 2012;22(6):699–701.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Davies J. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Cells Tissues Organs. 1996;156(3):187–201.

    CAS  CrossRef  Google Scholar 

  58. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Dittmar T, Heyder C, Gloria-Maercker E, Hatzmann W, Zänker KS. Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis. 2008;25(1):11–32.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153(3):865–73.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 2000;60(9):2541–6.

    CAS  PubMed  Google Scholar 

  62. van Schaijik B, Wickremesekera AC, Mantamadiotis T, Kaye AH, Tan ST, Stylli SS, et al. Circulating tumor stem cells and glioblastoma: a review. J Clin Neurosci. 2019;61:5–9.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Raggi C, Mousa HS, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene. 2016;35(6):671–82.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Munro MJ, Wickremesekera AC, Davis PF, Marsh R, Tan ST, Itinteang T. Renin-angiotensin system and cancer: a review. Integr Cancer Sci Therap. 2017;4(2):1–6.

    Google Scholar 

  65. Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol. 2015;62(1):198–207.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig. 2011;121(10):3804–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  67. Morel A-P, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  68. Biddle A, Mackenzie IC. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev. 2012;31(1):285–93.

    CrossRef  Google Scholar 

  69. Liu R-Y, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, et al. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 2014;44(5):1643–51.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4(4):221.

    PubMed  CrossRef  CAS  Google Scholar 

  71. Kim TH, Suh DH, Kim M-K, Song YS. Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. Biomed Res Int. 2014;2014:132702.

    PubMed  PubMed Central  Google Scholar 

  72. Wei X, Yang S, Pu X, He S, Yang Z, Sheng X, et al. Tumor-associated macrophages increase the proportion of cancer stem cells in lymphoma by secreting pleiotrophin. Am J Transl Res. 2019;11(10):6393–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Riether C, Schürch CM, Ochsenbein AF. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Diff. 2015;22(2):187–98.

    CAS  CrossRef  Google Scholar 

  74. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–91.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin Cancer Res. 2011;17(19):6125.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6(6):e1792.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Li H-J, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2012;2(9):840.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Li F, Tiede B, Massagué J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17(1):3–14.

    CAS  PubMed  CrossRef  Google Scholar 

  80. Roth I, Wickremesekera AC, Wickremesekera SK, Davis PF, Tan ST. Therapeutic targeting of cancer stem cells via modulation of the renin-angiotensin system. Front Oncol. 2019;9:745.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  81. Matsushita K, Wu Y, Okamoto Y, Pratt RE, Dzau VJ. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension. 2006;48(6):1095–102.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Sadik NA-H, Metwally NS, Shaker OG, Soliman MS, Mohamed AA, Abdelmoaty MM. Local renin-angiotensin system regulates the differentiation of mesenchymal stem cells into insulin-producing cells through angiotensin type 2 receptor. Biochimie. 2017;137:132–8.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Zambidis ET, Soon PT, Yu W, Tam A, Levine M, Yuan X, et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood. 2008;112(9):3601–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Koh SP, Leadbitter P, Smithers F, Tan ST. β-Blocker therapy for infantile haemangioma. Expert Rev Clin Pharmacol. 2020;13(8):899–915.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327(5964):459–63.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol. 2015;26(1):107–20.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Kim J-H, Park S-Y, Jun Y, Kim J-Y, Nam J-S. Roles of wnt target genes in the journey of cancer stem cells. Int J Mol Sci. 2017;18(8):1604.

    PubMed Central  CrossRef  CAS  Google Scholar 

  89. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650–3.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  90. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–96.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Shen C, Yang C, Xia B, You M. Long non-coding RNAs: emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Lett. 2020;S0304(20):30602–9.

    Google Scholar 

  93. Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42(Suppl 1):S3–S17.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  95. Hu X, Ghisolfi L, Keates AC, Zhang J, Xiang S, Lee DK, et al. Induction of cancer cell stemness by chemotherapy. Cell Cycle. 2012;11(14):2691–8.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Douglas RG, Shaw JH. Melanoma of the head and neck in Auckland. N Z Med J. 1987;100(832):584–7.

    CAS  PubMed  Google Scholar 

  97. The Cancer Council Australia and Australian Cancer Network SaNZG, Group: Wellington, https://www.moh.govt.nz/NoteBook/nbbooks.nsf/0/8CDC6AE18E2D16CACC257519007591AA/$file/melanoma-guideline-nov08-v2.pdf.

  98. Karimkhani C, Green AC, Nijsten T, Weinstock MA, Dellavalle RP, Naghavi M, et al. The global burden of melanoma: results from the global burden of disease study 2015. Br J Dermatol. 2017;177(1):134–40.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  99. Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol. 2013;66(8):644–8.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Sun Q, Lee W, Mohri Y, Takeo M, Lim CH, Xu X, et al. A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nat Commun. 2019;10(1):5023.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  101. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328–37.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob J-J, Halpern A, et al. Melanoma. Nat Rev Dis Primers. 2015;1(1):15003.

    PubMed  CrossRef  Google Scholar 

  103. Davies MA, Gershenwald JE. Targeted therapy for melanoma: a primer. Surg Oncol Clin N Am. 2011;20(1):165–80.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  104. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30(4):582–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  105. Maio M, Grob J-J, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Hauschild A, Dummer R, Schadendorf D, Santinami M, Atkinson V, Mandalà M, et al. Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAF V600-mutant stage III melanoma. J Clin Oncol. 2018;36(35):3441–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson J. Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe—a systematic review of the literature. Clin Epidemiol. 2016;8:109–22.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Nguyen N, Couts KL, Luo Y, Fujita M. Understanding melanoma stem cells. Melanoma Manag. 2015;2(2):179–88.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Parmiani G. Melanoma cancer stem cells: markers and functions. Cancers. 2016;8(3):34.

    PubMed Central  CrossRef  CAS  Google Scholar 

  112. Zimmerer RM, Korn P, Demougin P, Kampmann A, Kokemüller H, Eckardt AM, et al. Functional features of cancer stem cells in melanoma cell lines. Cancer Cell Int. 2013;13(1):78.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Zabierowski SE, Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008;26(17):2890–4.

    PubMed  CrossRef  Google Scholar 

  114. Brougham NDL, Tan ST. The incidence and risk factors of metastasis for cutaneous squamous cell carcinoma—implications on the T-classification system. J Surg Oncol. 2014;110(7):876–82.

    PubMed  CrossRef  Google Scholar 

  115. Ch'ng S, Maitra A, Allison R, Chaplin J, Gregor RT, Lea R, Tan ST. Parotid and cervical nodal status predict prognosis for patients with head & neck metastatic cutaneous squamous cell carcinoma—a multicentre study of the New Zealand population. J Surg Oncol. 2008;98:101–5.

    PubMed  CrossRef  Google Scholar 

  116. Brougham NDL, Dennett ER, Cameron R, Tan ST. The incidence of metastasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106(7):811–5.

    PubMed  CrossRef  Google Scholar 

  117. Brougham NDL, Dennett ER, Cameron R, Tan ST. Incidence and risk factors of metastasis for cutaneous squamous cell carcinoma. J Surg Oncol. 2012;106:811–5.

    PubMed  CrossRef  Google Scholar 

  118. Kraus DH, Carew JF, Harrison LB. Regional lymph node metastasis from cutaneous squamous cell carcinoma. Arch Otol Head Neck Surg. 1998;124(5):582–7.

    CAS  CrossRef  Google Scholar 

  119. McDowell LJ, Tan TJ, Bressel M, Estall V, Kleid S, Corry J, et al. Outcomes of cutaneous squamous cell carcinoma of the head and neck with parotid metastases. J Med Imaging Radiat Oncol. 2016;60(5):668–76.

    PubMed  CrossRef  Google Scholar 

  120. Xu R, Cai M-Y, Luo R-Z, Tian X, Chen M-K. The expression status and prognostic value of cancer stem cell biomarker CD133 in cutaneous squamous cell carcinoma. JAMA Dermatol. 2016;152(3):305–11.

    PubMed  CrossRef  Google Scholar 

  121. Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A. 2011;108(26):10544–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  122. Lapouge G, Beck B, Nassar D, Dubois C, Dekoninck S, Blanpain C. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO J. 2012;31(24):4563–75.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  123. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246.

    CAS  PubMed  CrossRef  Google Scholar 

  124. Erkisa M, Karakas D, Ulukaya E. Cancer stem cells: root of the evil. Crit Rev Oncog. 2019;24(1):69–87.

    PubMed  CrossRef  Google Scholar 

  125. Sellheyer K. Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol. 2011;164(4):696–711.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Brougham NDL, Dennett ER, Tan ST. Changing incidence of non-melanoma skin cancer in New Zealand. ANZ J Surg. 2011;81(9):633–6.

    PubMed  CrossRef  Google Scholar 

  127. Brougham NDL, Dennett E, Tan ST. Non-melanoma skin cancers—a neglected New Zealand problem. N Z Med J. 2010;123:59–64.

    PubMed  Google Scholar 

  128. Cowey CL. Targeted therapy for advanced basal-cell carcinoma: vismodegib and beyond. Dermatol Ther. 2013;3(1):17–31.

    CrossRef  Google Scholar 

  129. Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28(4):1040–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  130. Itinteang T, Marsh R, Davis PF, Tan ST. Angiotensin II causes cellular proliferation in infantile haemangioma via angiotensin II receptor 2 activation. J Clin Pathol. 2015;68(5):346.

    CAS  PubMed  CrossRef  Google Scholar 

  131. Itinteang T, Brasch HD, Tan ST, Day DJ. Expression of components of the renin-angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. J Plast Reconstr Aesthet Surg. 2011;64(6):759–65.

    PubMed  CrossRef  Google Scholar 

  132. Tan EMS, Brasch HD, Davis PF, Itinteang T, Tan ST. Embryonic stem cell-like population within venous malformation expresses the renin-angiotensin system. Plastic Reconstr Surg. 2019;7(4):e2170.

    Google Scholar 

  133. On N, Koh SP, Brasch HD, Dunne JC, Armstrong JR, Tan ST, et al. Embryonic stem cell-like population in Dupuytren’s disease expresses components of the renin-angiotensin system. Plast Reconstr Surg Glob Open. 2017;5(7)

    Google Scholar 

  134. Kilmister EJ, Paterson C, Brasch HD, Davis PF, Tan ST. The role of the renin-angiotensin system and vitamin D in keloid disorder—a review. Front Surg. 2019;6:67.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  135. Mehrotra S, Wickremesekera SK, Brasch HD, Van Schaijik B, Marsh RW, Tan ST, et al. Expression and localization of cathepsins B, D and G in cancer stem cells in liver metastasis from colon adenocarcinoma. Front Surg. 2018;5:40.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  136. Wickremesekera AC, Brasch HD, Lee VM, Davis PF, Parker A, Koeck H, et al. Cancer stem cell subpopulations in metastatic melanoma to the brain express components of the renin-angiotensin system. J Cancer Metastasis Treat. 2019;5:62.

    CAS  Google Scholar 

  137. Pantziarka P, Bryan BA, Crispino S, Dickerson EB. Propranolol and breast cancer—a work in progress. Ecancermedicalscience. 2018;12:ed82.

    PubMed  PubMed Central  Google Scholar 

  138. Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352(9123):179–84.

    CAS  PubMed  CrossRef  Google Scholar 

  139. Sun H, Li T, Zhuang R, Cai W, Zheng Y. Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: evidence from a meta-analysis including 55 studies. Medicine. 2017;96(13):e6394.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  140. Narayanan A, Wickremesekera SK, van Schaijik B, Marsh RW, Brasch HD, Tan ST, et al. Cancer stem cells in liver metastasis from colon adenocarcinoma express components of the renin-angiotensin system. J Cancer Metastasis Treat. 2019;5:36.

    CAS  Google Scholar 

  141. Bradshaw AR, Wickremesekera AC, Brasch HD, Chibnall AM, Davis PF, Tan ST, et al. Glioblastoma multiforme cancer stem cells express components of the renin–angiotensin system. Front Surg. 2016;3:51.

    PubMed  PubMed Central  Google Scholar 

  142. Featherston T, Yu HH, Dunne JC, Chibnall AM, Brasch HD, Davis PF, et al. Cancer stem cells in moderately differentiated buccal mucosal squamous cell carcinoma express components of the renin–angiotensin system. Front Surg. 2016;3:52.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  143. Ram RS, Brasch HD, Dunne JC, Davis PF, Tan ST, Itinteang T. Cancer stem cells in moderately differentiated lip squamous cell carcinoma express components of the renin–angiotensin system. Front Surg. 2017;4:30.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  144. Nallaiah S, Lee VMY, Brasch HD, de Jongh J, van Schaijik B, Marsh R, et al. Cancer stem cells within moderately differentiated head and neck cutaneous squamous cell carcinoma express components of the renin-angiotensin system. J Plast Reconstr Aesthet Surg. 2018;72(9):1484–93.

    PubMed  CrossRef  Google Scholar 

  145. Siljee SBO, Bocket N, van Shaijik B, Patel J, Brasch HD, Sim D, Davis PF, Itinteang T, Tan ST. Cancer stem cells in metastatic cutaneous head and neck squamous cell carcinoma express components of the renin-angiotensin system. Cell. 2021;10:268.

    CrossRef  CAS  Google Scholar 

  146. Siljee S, Pilkington T, Brasch HD, Bockett N, Patel J, Paterson E, et al. Cancer stem cells in head and neck metastatic malignant melanoma express components of the renin-angiotensin system. Life. 2020;10(11):268.

    CAS  PubMed Central  CrossRef  Google Scholar 

  147. Featherston T, Marsh RW, van Schaijik B, Brasch HD, Tan ST, Itinteang T. Expression and localization of cathepsins B, D, and G in two cancer stem cell subpopulations in moderately differentiated oral tongue squamous cell carcinoma. Front Med. 2017;4:100.

    CrossRef  Google Scholar 

  148. Koh SP, Wickremesekera AC, Brasch HD, Marsh R, Tan ST, Itinteang T. Expression of cathepsins B, D, and G in isocitrate dehydrogenase-wildtype glioblastoma. Front Surg. 2017;4:28.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  149. Featherston T, Brasch HD, Siljee SD, van Schaijik B, Patel J, de Jongh J, et al. Cancer stem cells in head and neck cutaneous squamous cell carcinoma express cathepsins. Plast Reconstr Surg Glob Open. 2020;8(8):e3042.

    PubMed  PubMed Central  Google Scholar 

  150. Itinteang T, Withers AH, Davis PF, Tan ST. Biology of infantile hemangioma. Front Surg. 1:38.

    Google Scholar 

  151. Tatokoro M, Fujii Y, Kawakami S, Saito K, Koga F, Matsuoka Y, et al. Phase-II trial of combination treatment of interferon-α, cimetidine, cyclooxygenase-2 inhibitor and renin-angiotensin-system inhibitor (I-CCA therapy) for advanced renal cell carcinoma. Cancer Sci. 2011;102(1):137–43.

    CAS  PubMed  CrossRef  Google Scholar 

  152. Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, Shabtai M, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651–61.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  153. O’Rawe M, Wickremesekera AC, Pandey R, Young D, Sim D, FitzJohn T, et al. Treatment of glioblastoma with re-purposed renin-angiotensin system modulators: results of a phase I clinical trial. J Clin Neurosc. 2021, https://doi.org/10.1016/j.jocn.2021.11.023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee T. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kilmister, E.J., Tan, S.T. (2022). Cancer Stem Cells in the Head and Neck Cancers. In: Burton, I., Klaassen, M.F. (eds) Atlas of Extreme Facial Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-88334-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88334-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88333-1

  • Online ISBN: 978-3-030-88334-8

  • eBook Packages: MedicineMedicine (R0)