Abstract
Extended permutation (EP) is a generalized notion of the standard permutation. Unlike the one-to-one correspondence mapping of the standard permutation, EP allows to replicate or omit elements as many times as needed during the mapping. EP is useful in the area of secure multi-party computation (MPC), especially for the problem of private function evaluation (PFE). As a special class of MPC problems, PFE focuses on the scenario where a party holds a private circuit C while all other parties hold their private inputs \(x_1, \ldots , x_n\), respectively. The goal of PFE protocols is to securely compute the evaluation result \(C(x_1, \ldots , x_n)\), while any other information beyond \(C(x_1, \ldots , x_n)\) is hidden. EP here is introduced to describe the topological structure of the circuit C, and it is further used to support the evaluation of C privately.
For an actively secure PFE protocol, it is crucial to guarantee that the private circuit provider cannot deviate from the protocol to learn more information. Hence, we need to ensure that the private circuit provider correctly performs an EP. This seeks the help of the so-called zero-knowledge argument of encrypted extended permutation protocol. In this paper, we provide an improvement of this protocol. Our new protocol can be instantiated to be non-interactive while the previous protocol should be interactive. Meanwhile, compared with the previous protocol, our protocol is significantly (e.g., more than \(3.4\times \)) faster, and the communication cost is only around \(24\%\) of that of the previous one.
Keywords
- Elgamal encryption
- Extended permutation
- Private function evaluation
- Zero-knowledge
This is a preview of subscription content, access via your institution.
Buying options



Notes
- 1.
Since \(\mathsf{OW}_8\) and \(\mathsf{OW}_9\), as output wires of the circuit C, have no connections to other wires, we can simply omit them in the EP.
References
Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990)
Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable universal circuits. J. Cryptol. 33(3), 1216–1271 (2020)
Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17
Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Highly efficient and re-executable private function evaluation with linear complexity. IEEE Trans. Depend. Secure Comput., 1 (2020)
Bingöl, M.A., Biçer, O., Kiraz, M.S., Levi, A.: An efficient 2-party private function evaluation protocol based on half gates. Comput. J. 62(4), 598–613 (2019)
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_22
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2
Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, Cambridge (2001)
Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 443–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_16
Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8
Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private function evaluation is practical. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 401–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_20
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Boca Raton (2014)
Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_30
Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_27
Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_7
Laud, P., Willemson, J.: Composable oblivious extended permutations. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 294–310. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17040-4_19
Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16(3), 143–184 (2003)
Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: improvements, implementation, and applications. IACR Cryptol. ePrint Arch. 2016, 17 (2016). http://eprint.iacr.org/2016/017
Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W.: Pushing the limits of valiant’s universal circuits: Simpler, tighter and more compact. IACR Cryptol. ePrint Arch. 2020, 161 (2020). https://eprint.iacr.org/2020/161
Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_33
Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evaluation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 486–505. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_26
Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual ACM Symposium on Theory of Computing, Hershey, Pennsylvania, USA, 3–5 May 1976, pp. 196–203. ACM (1976)
Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5 November 1982, pp. 160–164. IEEE Computer Society (1982)
Zhao, S., Yu, Yu., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: an overall improvement and a lower bound. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 401–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_15
Acknowledgments
We thank the reviewers for their detailed and helpful comments. Y. Liu and Q. Wang partially supported by the Shenzhen fundamental research programs under Grant no. 20200925154814002 and Guangdong Provincial Key Laboratory (Grant No. 2020B121201001). Y. Liu and S.-M. Yiu were also partially supported by ITF, Hong Kong (ITS/173/18FP).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Wang, Q., Yiu, SM. (2021). Improved Zero-Knowledge Argument of Encrypted Extended Permutation. In: Yu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2021. Lecture Notes in Computer Science(), vol 13007. Springer, Cham. https://doi.org/10.1007/978-3-030-88323-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-88323-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88322-5
Online ISBN: 978-3-030-88323-2
eBook Packages: Computer ScienceComputer Science (R0)