Skip to main content

Spontaneous Gap Opening in at Charge Neutrality Point of Rhombohedral Graphite Films

  • Chapter
  • First Online:
Electronic Properties of Rhombohedral Graphite

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In samples of rhombohedral graphite ranging from 3 to 4.5 nm thickness, corresponding to 9–12 layers of graphene, at low temperatures, a rise in resistance was found. This chapter is dedicated to the interaction induced gap at the charge neutrality point of rhombohedral graphite films, which is responsible for the rise in zero doping low temperature resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koshino M, McCann E (2009) Trigonal warping and Berry’s phase N-pi in ABC-stacked multilayer grapheme. Phys Rev B Condens Matter Mater Phys 80(16):1–8. https://doi.org/10.1103/PhysRevB.80.165409

  2. Slizovskiy S, McCann E, Koshino M, Fal’ko VI (2019) Films of rhombohedral graphite as two-dimensional topological semimetals, pp 1–15. [Online]. Available: http://arxiv.org/abs/1905.13094

  3. Shimazaki Y, Yamamoto M, Borzenets IV, Watanabe K, Taniguchi T, Tarucha S (2015) Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat Phys 11(12):1032–1036. https://doi.org/10.1038/nphys3551

    Article  Google Scholar 

  4. Sui M et al (2015) Gate-tunable topological valley transport in bilayer graphene. Nat Phys 11(12):1027–1031. https://doi.org/10.1038/nphys3485

    Article  Google Scholar 

  5. Martin J, Feldman BE, Weitz RT, Allen MT, Yacoby A (2010) Local compressibility measurements of correlated states in suspended bilayer graphene. Phys Rev Lett 105(25):256806. https://doi.org/10.1103/PhysRevLett.105.256806

    Article  ADS  Google Scholar 

  6. Weitz RT, Allen MT, Feldman BE, Martin J, Yacoby A (2010) Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330(6005):812–816. https://doi.org/10.1126/science.1194988

    Article  ADS  Google Scholar 

  7. Mayorov AS et al (2011) Interaction-driven spectrum reconstruction in bilayer graphene. Science 333(6044):860–863. https://doi.org/10.1126/science.1208683

    Article  ADS  Google Scholar 

  8. Freitag F, Trbovic J, Weiss M, Schönenberger C (2012) Spontaneously gapped ground state in suspended bilayer graphene. Phys Rev Lett 108(7):076602. https://doi.org/10.1103/PhysRevLett.108.076602

    Article  ADS  Google Scholar 

  9. Velasco J et al (2012) Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat Nanotechnol 7(3):156–160. https://doi.org/10.1038/nnano.2011.251

    Article  ADS  Google Scholar 

  10. Lee Y et al (2014) Competition between spontaneous symmetry breaking and single-particle gaps in trilayer graphene. Nat Commun 5:5656. https://doi.org/10.1038/ncomms6656

    Article  ADS  Google Scholar 

  11. Myhro K et al (2018) Large tunable intrinsic gap in rhombohedral-stacked tetralayer graphene at half filling. 2D Mater 5(4). https://doi.org/10.1088/2053-1583/aad2f2

  12. Zhang F, Jung J, Fiete GA, Niu Q, MacDonald AH (2011) Spontaneous quantum hall states in chirally stacked few-layer graphene systems. Phys Rev Lett 106(15):1–4. https://doi.org/10.1103/PhysRevLett.106.156801

    Article  Google Scholar 

  13. Kopnin NB, Heikkilä TT, Volovik GE (2011) High-temperature surface superconductivity in topological flat-band systems. Phys Rev B Condens Matter Mater Phys 83(22):1–4. https://doi.org/10.1103/PhysRevB.83.220503

  14. Kopnin NB, Ijäs M, Harju A, Heikkilä TT (2013) High-temperature surface superconductivity in rhombohedral graphite. Phys Rev B Condens Matter Mater Phys 87(14):1–4. https://doi.org/10.1103/PhysRevB.87.140503

  15. Henck H et al (2018) Flat electronic bands in long sequences of rhombohedral-stacked graphene. Phys Rev B 97(24):1–6. https://doi.org/10.1103/PhysRevB.97.245421

    Article  Google Scholar 

  16. Pamuk B, Baima J, Mauri F, Calandra M (2017) Magnetic gap opening in rhombohedral-stacked multilayer graphene from first principles. Phys Rev B 95(7). https://doi.org/10.1103/PhysRevB.95.075422

  17. Kharitonov M (2012) Canted antiferromagnetic phase of the ν=0 quantum Hall state in bilayer graphene. Phys Rev Lett 109(4):1–5. https://doi.org/10.1103/PhysRevLett.109.046803

    Article  Google Scholar 

  18. Gorbachev RV et al (2014) Detecting topological currents in graphene superlattices. Science 346(6208):448–451. https://doi.org/10.1126/science.1254966

    Article  ADS  Google Scholar 

  19. Hook JR, Hall HE (1990) Solid state physics. Wiley

    Google Scholar 

  20. Ran S et al (2017) Phase diagram of URu2–xFexSi2 in high magnetic fields. Proc Natl Acad Sci U S A 114(37):9826–9831. https://doi.org/10.1073/pnas.1710192114

    Article  ADS  Google Scholar 

  21. Kurita N, Tanaka H (2016) Magnetic-field- and pressure-induced quantum phase transition in CsFeCl3 proved via magnetization measurements. Phys Rev B 94(10):1–7. https://doi.org/10.1103/PhysRevB.94.104409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Ozdemir .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozdemir, S. (2021). Spontaneous Gap Opening in at Charge Neutrality Point of Rhombohedral Graphite Films. In: Electronic Properties of Rhombohedral Graphite. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-88307-2_6

Download citation

Publish with us

Policies and ethics