Skip to main content

Bulk Versus Surface Conduction in Rhombohedral Graphite Films

  • Chapter
  • First Online:
Electronic Properties of Rhombohedral Graphite

Part of the book series: Springer Theses ((Springer Theses))

  • 381 Accesses

Abstract

A fundamental issue to transport studies of topological insulator crystals has been the unavoidable albeit limitable parallel thermally activated bulk conduction. These crystals require careful crystal growth under laboratory conditions to unleash their topological properties, unlike rhombohedral graphite films which are exfoliated from high quality crystals of naturally occurring graphite.The bulk band gap of rhombohedral graphite films, in the thicknesses of the films studied (9 to 50 layers) with tight binding predicted bulk gap sizes ranging from 370 to 71 meV is comparable to bulk gap sizes of ordinary topological insulators. During experiments, one would expect a smaller transport gap size to manifest itself as it has been the case in other topological insulators, where one would expect, the conduction at low temperature at least, to be dominated by the surface states of topological origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heikkilä TT, Volovik GE (2011) Dimensional crossover in topological matter: evolution of the multiple Dirac point in the layered system to the flat band on the surface. JETP Lett 93(2):59–65. https://doi.org/10.1134/S002136401102007X

    Article  ADS  Google Scholar 

  2. Fu L, Kane CL, Mele EJ (2007) Topological insulators in three dimensions. Phys Rev Lett 98(10):1–4. https://doi.org/10.1103/PhysRevLett.98.106803

    Article  Google Scholar 

  3. Xiao R, Tasnádi F, Koepernik K, Venderbos JWF, Richter M, Taut M (2011) Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit. Phys. Rev. B-Condens. Matter Mater. Phys. 84(16):1–15. https://doi.org/10.1103/PhysRevB.84.165404

  4. Asbóth JK, Oroszlány L, Pályi A (2016) The Su-Schrieffer-Heeger (SSH) model. In: A short course on topological insulators: band structure and edge states in one and two dimensions. Springer International Publishing, Cham, pp 1–22

    Google Scholar 

  5. Slizovskiy S, McCann E, Koshino M, Fal’ko VI (2019) Films of rhombohedral graphite as two-dimensional topological semimetals. Commun. Phys. 2(1):1–10. https://doi.org/10.1038/s42005-019-0268-8

  6. Ho CH, Chang CP, Lin MF (2016) Evolution and dimensional crossover from the bulk subbands in ABC-stacked graphene to a three-dimensional Dirac cone structure in rhombohedral graphite. Phys Rev B 93(7). https://doi.org/10.1103/PhysRevB.93.075437

  7. Ren Z, Taskin AA, Sasaki S, Segawa K, Ando Y (2010) Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2 Te2 Se. Phys Rev B-Condens Matter Mater Phys 82(24):1–4. https://doi.org/10.1103/PhysRevB.82.241306

  8. Skinner B, Chen T, Shklovskii BI (2012) Why is the bulk resistivity of topological insulators so small? Phys Rev Lett 109(17):1–5. https://doi.org/10.1103/PhysRevLett.109.176801

    Article  Google Scholar 

  9. Barreto L et al (2014) Surface-dominated transport on a bulk topological insulator. Nano Lett 14(7):3755–3760. https://doi.org/10.1021/nl501489m

    Article  ADS  Google Scholar 

  10. Henni Y et al (2016) Rhombohedral multilayer graphene: a magneto-Raman scattering study. Nano Lett 16(6):3710–3716. https://doi.org/10.1021/acs.nanolett.6b01041

    Article  ADS  Google Scholar 

  11. Yang Y et al (2019) Stacking order in graphite films controlled by van der Waals technology. Nano Lett 19(12):8526–8532. https://doi.org/10.1021/acs.nanolett.9b03014

    Article  ADS  Google Scholar 

  12. Shi Y et al (2020) Electronic phase separation in multilayer rhombohedral graphite. Nature 584(7820):210–214. https://doi.org/10.1038/s41586-020-2568-2

    Article  ADS  Google Scholar 

  13. Kushwaha SK et al (2016) Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat Commun 7(1):11456. https://doi.org/10.1038/ncomms11456

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Ozdemir .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozdemir, S. (2021). Bulk Versus Surface Conduction in Rhombohedral Graphite Films. In: Electronic Properties of Rhombohedral Graphite. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-88307-2_4

Download citation

Publish with us

Policies and ethics