Skip to main content

Experimental Technicalities

  • Chapter
  • First Online:
Electronic Properties of Rhombohedral Graphite

Part of the book series: Springer Theses ((Springer Theses))

  • 370 Accesses

Abstract

This chapter highlights the experimental details that were an important aspect on carrying out the systematic investigation of electronic properties of rhombohedral graphite thin films. Details of device fabrication, measurement electronics, temperature control and superconducting magnet operation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  2. Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. https://doi.org/10.1038/nature04233

    Article  ADS  Google Scholar 

  3. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204. https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  4. Hwang EH, Adam S, Das Sarma S (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):2–5. https://doi.org/10.1103/PhysRevLett.98.186806

  5. Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED (2007) Atomic structure of graphene on SiO2. Nano Lett 7(6):1643–1648. https://doi.org/10.1021/nl070613a

    Article  ADS  Google Scholar 

  6. Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):11–14. https://doi.org/10.1103/PhysRevLett.100.016602

    Article  MathSciNet  Google Scholar 

  7. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209. https://doi.org/10.1038/nnano.2008.58

    Article  Google Scholar 

  8. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495. https://doi.org/10.1038/nnano.2008.199

    Article  ADS  Google Scholar 

  9. Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  ADS  Google Scholar 

  10. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3(6):404–409. https://doi.org/10.1038/nmat1134

    Article  ADS  Google Scholar 

  11. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B Condens Matter Mater Phys 76(7):2–5. https://doi.org/10.1103/PhysRevB.76.073103

  12. Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726. https://doi.org/10.1038/nnano.2010.172

    Article  ADS  Google Scholar 

  13. Dean CR et al (2011) Multicomponent fractional quantum Hall effect in graphene. Nat Phys 7(9):693–696. https://doi.org/10.1038/nphys2007

    Article  Google Scholar 

  14. Mayorov AS et al (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399. https://doi.org/10.1021/nl200758b

    Article  ADS  Google Scholar 

  15. Castellanos-Gomez A et al (2014) Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1(1). https://doi.org/10.1088/2053-1583/1/1/011002

  16. Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K (2015) Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system. 2D Mater 2(4). https://doi.org/10.1088/2053-1583/2/4/041002

  17. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 313. https://doi.org/10.1126/science.aac9439

  18. Latychevskaia T et al (2019) Stacking transition in rhombohedral graphite. Front Phys 14(13608). https://doi.org/10.1007/s11467-018-0867-y

  19. Balakrishnan J, Kok Wai Koon G, Jaiswal M, Castro Neto AH, Özyilmaz B (2013) Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nat Phys 9(5):284–287. https://doi.org/10.1038/nphys2576

  20. Gorbachev RV et al (2014) Detecting topological currents in graphene superlattices. Science 346(6208):448–451. https://doi.org/10.1126/science.1254966

    Article  ADS  Google Scholar 

  21. Koshino M (2010) Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B Condens Matter Mater Phys 81(12):1–7. https://doi.org/10.1103/PhysRevB.81.125304

  22. Castro EV et al (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99(21):8–11. https://doi.org/10.1103/PhysRevLett.99.216802

    Article  Google Scholar 

  23. Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK (2008) Gate-induced insulating state in bilayer graphene devices. Nat Mater 7(2):151–157. https://doi.org/10.1038/nmat2082

    Article  ADS  Google Scholar 

  24. Zhang Y et al (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248):820–823. https://doi.org/10.1038/nature08105

    Article  ADS  Google Scholar 

  25. Taychatanapat T, Jarillo-Herrero P (2010) Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys Rev Lett 105(16):1–4. https://doi.org/10.1103/PhysRevLett.105.166601

    Article  Google Scholar 

  26. Balshaw N (1996) Practical cryogenics. An introduction to laboratory cryogenics. Oxford Instruments Superconductivity Limited

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Ozdemir .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozdemir, S. (2021). Experimental Technicalities. In: Electronic Properties of Rhombohedral Graphite. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-88307-2_3

Download citation

Publish with us

Policies and ethics