Skip to main content

Fundamentals of Electron Transport

  • Chapter
  • First Online:
Electronic Properties of Rhombohedral Graphite

Part of the book series: Springer Theses ((Springer Theses))

  • 418 Accesses

Abstract

In this chapter a general introduction and overview of electronic transport concepts such as effective mass and mobility will be given where Ohms law will be derived through both from a classical picture as well as a semi-classical picture. Fundamental electron transport phenomena of Shubnikov-de Haas oscillations as well as quantum (anomalous) Hall effect will be introduced. Lastly, quantum transport phenomena of weak (anti)localization will be explained in a pedagogical way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hook JR, Hall HE (1990) Solid state physics. Wiley

    Google Scholar 

  2. Kittel C (2004) Introduction to solid state physics. Wiley

    Google Scholar 

  3. Bostwick A, Ohta T, Seyller T, Horn K, Rotenberg E (2007) Quasiparticle dynamics in graphene. Nat Phys 3(1):36–40. https://doi.org/10.1038/nphys477

    Article  Google Scholar 

  4. Drude P (1900) Zur Elektronentheorie der Metalle. Ann Phys 306(3):566–613. https://doi.org/10.1002/andp.19003060312

    Article  MATH  Google Scholar 

  5. Bloch F (1929) Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Phys 52(7–8):555–600. https://doi.org/10.1007/BF01339455

    Article  ADS  MATH  Google Scholar 

  6. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press

    Google Scholar 

  7. Hall EH (1879) On a new action of the magnet on electric currents. Am J Math 2(3):287–292

    Article  MathSciNet  Google Scholar 

  8. Prange RE, Girvin SM (1987) The quantum hall effect. Springer, New York

    Book  Google Scholar 

  9. Schubnikow WJ, de Haas L (1930) Neue Erscheinungen bei der Widerstandsänderung von Wismuthkristallen im Magnetfeld bei der Temperatur von flüssigem Wasserstoff (I). Proc R Netherlands Acad Arts Sci 33:363–378

    Google Scholar 

  10. Coleridge PT, Stoner R, Fletcher R (1989) Low-field transport coefficients in GaAs/Ga1-xAlxAs heterostructures. Phys Rev B 39(2):1120–1124. https://doi.org/10.1103/PhysRevB.39.1120

    Article  ADS  Google Scholar 

  11. Kosevich AM, Lifshitz IM (1956) The de Haas-van Alphen effect in thin metal layers. Jetp 2(4):646–649

    Google Scholar 

  12. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45(6):494–497. https://doi.org/10.1103/PhysRevLett.45.494

  13. Klitzing KV (1984) The quantized Hall effect. Physica B 126:242–249. https://doi.org/10.1016/0378-4363(84)90170-0

  14. Chang MC, Niu Q (1995) Berry phase, hyperorbits, and the Hofstadter spectrum. Phys Rev Lett 75(7):1348–1351. https://doi.org/10.1103/PhysRevLett.75.1348

    Article  ADS  Google Scholar 

  15. Hall EH (1881) On the ‘rotational coefficient’ in nickel and cobalt. London Edinburgh Dublin Philos Mag J Sci 12(74):157–172. https://doi.org/10.1080/14786448108627086

    Article  Google Scholar 

  16. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP (2010) Anomalous Hall effect. Rev Mod Phys 82(2):1539–1592. https://doi.org/10.1103/RevModPhys.82.1539

    Article  ADS  Google Scholar 

  17. Karplus R, Luttinger JM (1954) Hall effect in Ferromagnetics. Phys Rev 95(5):1154–1160. https://doi.org/10.1103/PhysRev.95.1154

    Article  ADS  MATH  Google Scholar 

  18. Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc A Math Phys Eng Sci 392(1802):45–57. https://doi.org/10.1098/rspa.1984.0023

  19. Jungwirth T, Niu Q, MacDonald AH (2002) Anomalous hall effect in ferromagnetic semiconductors. Phys Rev Lett 88(20):4. https://doi.org/10.1103/PhysRevLett.88.207208

    Article  Google Scholar 

  20. Lee WL, Watauchi S, Miller VL, Cava RJ, Ong NP (2004) Dissipationless anomalous hall current in the ferromagnetic spinel CuCr2Se4-xBrx. Science (80-) 303(5664):1647–1649. https://doi.org/10.1126/science.1094383

  21. Smit J (1955) The spontaneous hall effect in ferromagnetics I. Physica 21(6–10):877–887. https://doi.org/10.1016/S0031-8914(55)92596-9

    Article  ADS  Google Scholar 

  22. Thouless DJ, Kohmoto M, Nightingale MP, Den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49(6):405–408. https://doi.org/10.1103/PhysRevLett.49.405

    Article  ADS  Google Scholar 

  23. Haldane FDM (1988) Model for a quantum hall effect without landau levels: condensed-matter realization of the ‘parity anomaly.’ Phys Rev Lett 61(18):2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015

    Article  ADS  Google Scholar 

  24. Chang C-Z et al (2013) Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129):167–170. https://doi.org/10.1126/science.1234414

    Article  ADS  Google Scholar 

  25. D’yakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. Sov Phys JETP Lett 13(11):467. Available: http://www.jetpletters.ac.ru/ps/1587/article_24366.shtml

  26. Hirsch JE (1999) Spin hall effect. Phys Rev Lett 83(9):1834–1837. https://doi.org/10.1103/PhysRevLett.83.1834

    Article  ADS  Google Scholar 

  27. Sinova J, Culcer D, Niu Q, Sinitsyn NA, Jungwirth T, Macdonald AH (2004) Universal Intrinsic spin hall effect, no March, pp 1–4. https://doi.org/10.1103/PhysRevLett.92.126603

  28. Kato YK, Myers RC, Gossard AC, Awschalom DD (2004) Observation of the spin hall effect in semiconductors. Science 306(5703):1910–1913. https://doi.org/10.1126/science.1105514

    Article  ADS  Google Scholar 

  29. Wunderlich J, Kaestner B, Sinova J, Jungwirth T (2005) Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett 94(4):1–4. https://doi.org/10.1103/PhysRevLett.94.047204

    Article  Google Scholar 

  30. Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442(7099):176–179. https://doi.org/10.1038/nature04937

    Article  ADS  Google Scholar 

  31. Abanin DA, Shytov AV, Levitov LS, Halperin BI (2009) Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys Rev B-Condens Matter Mater Phys 79(3):77–81. https://doi.org/10.1103/PhysRevB.79.035304

  32. Balakrishnan J, Kok Wai Koon G, Jaiswal M, Castro Neto AH, Özyilmaz B (2013) Colossal enhancement of spin-orbit coupling in weakly hydrogenated grapheme. Nat Phys 9(5):284–287. https://doi.org/10.1038/nphys2576

  33. Kane CL, Mele EJ (2005) Quantum Spin hall effect in graphene. Phys Rev Lett 95(22):1–4. https://doi.org/10.1103/PhysRevLett.95.226801

    Article  Google Scholar 

  34. Konig M et al (2007) Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851):766–770. https://doi.org/10.1126/science.1148047

    Article  ADS  Google Scholar 

  35. Zhang F, Jung J, Fiete GA, Niu Q, MacDonald AH (2011) Spontaneous quantum hall states in chirally stacked few-layer graphene systems. Phys Rev Lett 106(15):1–4. https://doi.org/10.1103/PhysRevLett.106.156801

    Article  Google Scholar 

  36. Xiao D, Yao W, Niu Q (2007) Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 99(23):1–4. https://doi.org/10.1103/PhysRevLett.99.236809

    Article  Google Scholar 

  37. Gunawan O, Shkolnikov YP, Vakili K, Gokmen T, De Poortere EP, Shayegan M (2006) Valley susceptibility of an interacting two-dimensional electron system. Phys Rev Lett 97(18):1–4. https://doi.org/10.1103/PhysRevLett.97.186404

    Article  Google Scholar 

  38. Gunawan O, Habib B, De Poortere EP, Shayegan M (2006) Quantized conductance in an AlAs two-dimensional electron system quantum point contact. Phys Rev B-Condens Matter Mater Phys 74(15):1–8. https://doi.org/10.1103/PhysRevB.74.155436

  39. Rycerz A, Tworzydło J, Beenakker CWJ (2007) Valley filter and valley valve in graphene. Nat Phys 3(3):172–175. https://doi.org/10.1038/nphys547

    Article  Google Scholar 

  40. Morozov SV et al (2006) Strong suppression of weak localization in graphene. Phys Rev Lett 97(1):7–10. https://doi.org/10.1103/PhysRevLett.97.016801

    Article  Google Scholar 

  41. Zhou SY et al (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6(10):770–775. https://doi.org/10.1038/nmat2003

    Article  ADS  Google Scholar 

  42. Mak KF, McGill KL, Park J, McEuen PL (2014) The valley hall effect in MoS2 transistors. Science 344(6191):1489–1492. https://doi.org/10.1126/science.1250140

    Article  ADS  Google Scholar 

  43. Gorbachev RV et al (2014) Detecting topological currents in graphene superlattices. Science 346(6208):448–451. https://doi.org/10.1126/science.1254966

    Article  ADS  Google Scholar 

  44. Shimazaki Y, Yamamoto M, Borzenets IV, Watanabe K, Taniguchi T, Tarucha S (2015) Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat Phys 11(12):1032–1036. https://doi.org/10.1038/nphys3551

    Article  Google Scholar 

  45. Hung TYT, Camsari KY, Zhang S, Upadhyaya P, Chen Z (2019) Direct observation of valley-coupled topological current in MoS2. Sci Adv 5(4):1–7. https://doi.org/10.1126/sciadv.aau6478

    Article  ADS  Google Scholar 

  46. Sui M et al (2015) Gate-tunable topological valley transport in bilayer graphene. Nat Phys 11(12):1027–1031. https://doi.org/10.1038/nphys3485

    Article  Google Scholar 

  47. Wu Z et al (2019) Intrinsic valley Hall transport in atomically thin MoS2. Nat Commun 10(1):1–8. https://doi.org/10.1038/s41467-019-08629-9

    Article  ADS  Google Scholar 

  48. Ju L et al (2015) Topological valley transport at bilayer graphene domain walls. Nature 520(7549):650–655. https://doi.org/10.1038/nature14364

    Article  ADS  Google Scholar 

  49. Aivazian G et al (2015) Magnetic control of valley pseudospin in monolayer WSe 2. Nat Phys 11(2):148–152. https://doi.org/10.1038/nphys3201

    Article  Google Scholar 

  50. Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoʇlu A (2015) Valley Zeeman effect in elementary optical excitations of monolayer WSe 2. Nat Phys 11(2):141–147. https://doi.org/10.1038/nphys3203

    Article  Google Scholar 

  51. Macneill D et al (2015) Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys Rev Lett 114(3):1–5. https://doi.org/10.1103/PhysRevLett.114.037401

    Article  Google Scholar 

  52. Li Y et al (2014) Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys Rev Lett 113(26):1–5. https://doi.org/10.1103/PhysRevLett.113.266804

    Article  Google Scholar 

  53. Duan F, Guojun J (2005) Introduction to condensed matter physics: volume 1, no. v. 1. World Scientific

    Google Scholar 

  54. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492–1505. https://doi.org/10.1103/PhysRev.109.1492

    Article  ADS  Google Scholar 

  55. Altshuler BL, Khmel’nitzkii D, Larkin AI, Lee PA (1980) Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys Rev B 22(11):5142–5153. https://doi.org/10.1103/PhysRevB.22.5142

  56. Hikami S, Larkin AI, Nagaoka Y (1980) Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog Theor Phys 63(2):707–710. https://doi.org/10.1143/ptp.63.707

    Article  ADS  Google Scholar 

  57. Kawabata A (1980) Theory of negative magnetoresistance in three-dimensional systems. Solid State Commun 34(6):431–432. https://doi.org/10.1016/0038-1098(80)90644-4

    Article  ADS  Google Scholar 

  58. Al’tshuler BL, Aronov AG, Larkin AI, Khmel’nitskii DE (1981) The anomalous magnetoresistance in semiconductors. Sov Phys JETP 54(2):0411. Available: http://www.jetp.ac.ru/cgi-bin/e/index/e/54/2/p411?a=list

  59. Bergmann G (1982) Weak anti-localization—an experimental proof for the destructive interference of rotated spin. Solid State Commun 42(11):815–817. https://doi.org/10.1016/0038-1098(82)90013-8

    Article  ADS  Google Scholar 

  60. Mccann E, Kechedzhi K, Fala’Ko VI, Suzuura H, Ando T, Altshuler BL (2006) Weak-localization magnetoresistance and valley symmetry in grapheme. Phys Rev Lett 97(14):14–17. https://doi.org/10.1103/PhysRevLett.97.146805

  61. Tikhonenko FV, Kozikov AA, Savchenko AK, Gorbachev RV (2009) Transition between electron localization and antilocalization in graphene. Phys Rev Lett 103(22):1–4. https://doi.org/10.1103/PhysRevLett.103.226801

    Article  Google Scholar 

  62. Kim HJ et al (2013) Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys Rev Lett 111(24):1–5. https://doi.org/10.1103/PhysRevLett.111.246603

    Article  Google Scholar 

  63. Huang X et al (2015) Observation of the chiral-anomaly-induced negative magnetoresistance: In 3D Weyl semimetal TaAs. Phys Rev X 5(3):1–9. https://doi.org/10.1103/PhysRevX.5.031023

    Article  ADS  Google Scholar 

  64. Zhang CL et al (2016) Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms10735

    Article  ADS  Google Scholar 

  65. Li Q et al (2016) Chiral magnetic effect in ZrTe 5. Nat Phys 12(6):550–554. https://doi.org/10.1038/nphys3648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Ozdemir .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozdemir, S. (2021). Fundamentals of Electron Transport. In: Electronic Properties of Rhombohedral Graphite. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-88307-2_2

Download citation

Publish with us

Policies and ethics