Skip to main content

Applications

  • Chapter
  • First Online:
Book cover Plasmonics for Hydrogen Energy

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 266 Accesses

Abstract

Hydrogen production from water, or so-called water splitting, by using photocatalysts is intensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG (2016) Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352:1210–1213

    Article  CAS  PubMed  Google Scholar 

  3. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K (2020) Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581:411–414

    Article  CAS  PubMed  Google Scholar 

  4. Liu ZW, Hou WB, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11:1111–1116

    Article  CAS  PubMed  Google Scholar 

  5. Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5202–5205

    Article  CAS  PubMed  Google Scholar 

  6. Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL, Mlayah A, Han MY (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314

    Article  CAS  PubMed  Google Scholar 

  7. Lee J, Mubeen S, Ji XL, Stucky GD, Moskovits M (2012) Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12:5014–5019

    Article  CAS  PubMed  Google Scholar 

  8. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2013) Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catalysis 3:79–85

    Article  CAS  Google Scholar 

  10. Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251

    Article  CAS  PubMed  Google Scholar 

  11. Zheng ZK, Tachikawa T, Majima T (2014) Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 136:6870–6873

    Article  CAS  PubMed  Google Scholar 

  12. Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6:1453–1462

    CAS  Google Scholar 

  13. Li JT, Cushing SK, Zheng P, Senty T, Meng FK, Bristow AD, Manivannan A, Wu NQ (2014) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136:8438–8449

    Article  CAS  PubMed  Google Scholar 

  14. Zhu MS, Cai XY, Fujitsuka M, Zhang JY, Majima T (2017) Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew Chem Int Ed 56:2064–2068

    Article  CAS  Google Scholar 

  15. Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y (2018) MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Env Sci 11:106–114

    Article  CAS  Google Scholar 

  16. Guselnikova O, Trelin A, Miliutina E, Elashnikov R, Sajdl P, Postnikov P, Kolska Z, Svorcik V, Lyutakov O (2020) Plasmon-Induced Water Splitting through Flexible hybrid 2D Architecture up to hydrogen from seawater under NIR light. ACS Appl Mater Interfaces 12:28110–28119

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh D, Roy K, Sarkar K, Devi P, Kumar P (2020) Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl Mater Interfaces 12:28792–28800

    Article  CAS  PubMed  Google Scholar 

  18. Ren H, Yang JL, Yang WM, Zhong HL, Lin JS, Radjenovic PM, Sun L, Zhang H, Xu J, Tian ZQ, Li JF (2021) Core-shell-satellite plasmonic photocatalyst for broad-spectrum photocatalytic water splitting. ACS Mater Lett 3:69–76

    Article  CAS  Google Scholar 

  19. Zhou L, Zhang C, McClain MJ, Manavacas A, Krauter CM, Tian S, Berg F, Everitt HO, Carter EA, Nordlander P, Halas NJ (2016) Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett 16:1478–1484

    Article  CAS  PubMed  Google Scholar 

  20. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2003) Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies. Nature 422:705–707

    Article  CAS  PubMed  Google Scholar 

  21. Lopez N, Lodziana Z, Illas F, Salmeron M (2004) When Langmuir is too simple: H2 dissociation on Pd(111) at high coverage. Phys Rev Lett 93:146103

    Google Scholar 

  22. Kitagawa Y, Tanabe K (2018) Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step. Chem Phys Lett 699:132–138

    Article  CAS  Google Scholar 

  23. Fukuoka N, Tanabe K (2019) Large plasmonic field enhancement on hydrogen-absorbing transition metals at lower frequencies: implications for hydrogen storage, sensing, and nuclear fusion. J Appl Phys 126:023102

    Google Scholar 

  24. Di Pascasio F, Gozzi D, Panella B, Trionfetti C (2003) H2 plasma for hydrogen loading in Pd. Intermetallics 11:1345-1354

    Google Scholar 

  25. Hodille EA, Fernandez N, Piazza ZA, Ajmalghan M, Ferro Y (2018) Hydrogen supersaturated layers in H/D plasma-loaded tungsten: a global model based on thermodynamics, kinetics and density functional theory data. Phys Rev Mater 2:093802

    Google Scholar 

  26. Losurdo M, Gutiérrez Y, Suvorova A, Giangregorio MM, Rubanov S, Brown AS, Moreno F (2021) Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover. Adv Mater 33:2100500

    Article  CAS  Google Scholar 

  27. Sytwu K, Vadai M, Hayee F, Angell DK, Dai A, Dixon J, Dionne JA (2021) Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science 371:280–283

    Article  CAS  PubMed  Google Scholar 

  28. Lundström KI, Shivaraman MS, Svensson CM (1975) A hydrogen-sensitive Pd-gate MOS transistor. J Appl Phys 46:3876–3881

    Article  Google Scholar 

  29. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231

    Article  CAS  PubMed  Google Scholar 

  30. Hubert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors – A review. Sensors Actuators B 157:329–352

    Article  CAS  Google Scholar 

  31. Butler MA (1984) Optical fiber hydrogen sensor. Appl Phys Lett 45:1007–1009

    Article  CAS  Google Scholar 

  32. TobisÏka P, Hugon O, Trouillet A, Gagnaire H (2001) An integrated optic hydrogen sensor based on SPR on palladium. Sensors Actuators B 74:168–172

    Article  Google Scholar 

  33. Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clement M (2002) Surface plasmon resonance hydrogen sensor using an optical fibre. Measure Sci Technol 13:118–124

    Article  CAS  Google Scholar 

  34. Langhammer C, Zoric I, Kasemo B, Clemens BM (2007) Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett 7:3122–3127

    Article  CAS  PubMed  Google Scholar 

  35. Lin KQ, Lu YH, Chen JX, Zheng RS, Wang P, Ming H (2008) Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Opt Express 16:18599–18604

    Article  CAS  PubMed  Google Scholar 

  36. Langhammer C, Zhdanov VP, Zoric I, Kasemo B (2010) Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys Rev Lett 104:135502

    Google Scholar 

  37. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636

    Article  CAS  PubMed  Google Scholar 

  38. Tittl A, Mai P, Taubert R, Dregely D, Liu N, Giessen H (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11:4366–4369

    Article  CAS  PubMed  Google Scholar 

  39. Bardhan R, Hedges LO, Pint CL, Javey A, Whitelam S, Urban JJ (2013) Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat Mater 12:905–912

    Article  CAS  PubMed  Google Scholar 

  40. Perrotton C, Westerwaal RJ, Javahiraly N, Slaman M, Schreuders H, Dam B, Meyrueis P (2013) A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt Express 21:382–390

    Article  CAS  PubMed  Google Scholar 

  41. Baldi A, Narayan TC, Koh AL, Dionne JA (2014) In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Nater. 13:1143–1148

    CAS  Google Scholar 

  42. Syrenova S, Wadell C, Nugroho FAA, Gschneidtner TA, Diaz Fernandez YA, Nalin G, Switlik D, Westerlund F, Antosiewicz TJ, Zhdanov VP, Moth-Poulsen K, Langhammer C (2015) Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat Mater 14:1236–1244

    Google Scholar 

  43. Narayan TC, Baldi A, Koh AL, Sinclair R, Dionne JA (2016) Reconstructing solute-induced phase transformations within individual nanocrystals. Nat Mater 15:768–774

    Article  CAS  PubMed  Google Scholar 

  44. Narayan TC, Hayee F, Baldi A, Koh AL, Sinclair R, Dionne JA (2017) Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nat Commun 8:14020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nugroho FAA, Darmadi I, Cusinato L, Susarrey-Arce A, Schreuders H, Bannenberg LJ, da Silva Fanta AB, Kadkhodazadeh S, Wagner JB, AntosiewiczTJ, Hellman A, Zhdanov VP, Dam B, Langhammer C (2019) Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat Mater 18:489–495

    Google Scholar 

  46. Nuckolls J, Thiessen A, Wood L, Zimmerman G (1972) Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239:139–142

    Article  CAS  Google Scholar 

  47. Kodama R, Norreys PA, Mima K, Dangor AE, Evans RG, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose SJ, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka KA, Toyama Y, Yamanaka T, Zepf M (2001) Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412:798–802

    Article  CAS  PubMed  Google Scholar 

  48. Kodama R, Shiraga H, Shigemori K, Toyama Y, Fujioka S, Azechi H, Fujita H, Habara H, Hall T, Izawa Y, Jitsuno T, Kitagawa Y, Krushelnick KM, Lancaster KL, Mima K, Nagai K, Nakai M, Nishimura H, Norimatsu T, Norreys PA, Sakabe S, Tanaka KA, Youssef A, Zepf M, Yamanaka T (2002) Fast heating scalable to laser fusion ignition. Nature 418:933–934

    Article  CAS  PubMed  Google Scholar 

  49. Hurricane OA, Callahan DA, Casey DT, Celliers PM, Cerjan C, Dewald EL, Dittrich TR, Doppner T, Hinkel DE, Hopkins LFB, Kline JL, Le Pape S, Ma T, MacPhee AG, Milovich JL, Pak A, Park HS, Patel PK, Remington BA, Salmonson JD, Springer PT, Tommasini R (2014) Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506:343–348

    Article  CAS  PubMed  Google Scholar 

  50. Mori Y, Nishimura Y, Hanayama R, Nakayama S, Ishii K, Kitagawa Y, Sekine T, Sato N, Kurita T, Kawashima T, Kan H, Komeda O, Nishi T, Azuma H, Hioki T, Motohiro T, Sunahara A, Sentoku Y, Miura E (2016) Fast heating of imploded core with counterbeam configuration. Phys Rev Lett 117: 055001

    Google Scholar 

  51. La Pape S, Berzak Hopkins LF, Divol L, Pak A, Dewald EL, Bhandarkar S, Bennedetti LR, Bunn T, Biener J, Crippen J, Casey D, Edgell D, Fittinghoff DN, Gatu-Johnson M, Goyon C, Haan S, Hatarik R, Havre M, Ho DD, Izumi N, Jaquez J, Khan SF, Kyrala GA, Ma T, Mackinnon AJ, MacPhee AG, MacGowan BJ, Meezan NB, Milovich J, Millot M, Michel P, Nagel SR, Nikroo A, Patel P, Ralph J, Ross JS, Rice NG, Strozzi D, Stadermann M, Volegov P, Yeamans C, Weber C, Wild C, Callahan D, Hurricane OA (2018) Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys Rev Lett 120:245003

    Google Scholar 

  52. Sakata S, Lee S, Morita H, Johzaki T, Sawada H, Iwasa Y, Matsuo K, Law KFF, Yao A, Hata M, Sunahara A, Kojima S, Abe Y, Kishimoto H, Syuhada A, Shiroto T, Morace A, Yogo A, Iwata N, Nakai M, Sakagami H, Ozaki T, Yamanoi K, Norimatsu T, Nakata Y, Tokita S, Miyanaga N, Kawanaka J, Shiraga H, Mima K, Nishimura H, Bailly-Grandvaux M, Santos JJ, Nagatomo H, Azechi H, Kodama R, Arikawa Y, Sentoku Y, Fujioka S (2018) Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nat Commun 9:3937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fleischmann M, Pons S, Hawkins M (1989) Electrochemically induced nuclear-fusion of deuterium. J Electroanal Chem 261:301–308

    Article  CAS  Google Scholar 

  54. Jones SE, Palmer EP, Czirr JB, Decker DL, Jensen GL, Thorne JM, Taylor SF, Rafelski J (1989) Observation of cold nuclear fusion in condensed matter. Nature 338:737–740

    Article  CAS  Google Scholar 

  55. Iwamura Y, Sakano M, Itoh T (2002) Elemental analysis of Pd complexes: Effects of D2 gas permeation. Jpn J Appl Phys 41:4642–4650

    Article  CAS  Google Scholar 

  56. Czerski K, Weissbach D, Kilic AI, Ruprecht G, Huke A, Kaczmarski M, Targosz-Sleczka N, Maass K (2016) Screening and resonance enhancements of the 2H(d, p)3H reaction yield in metallic environments. EPL 113:22001

    Article  CAS  Google Scholar 

  57. Holmlid L, Olafsson S (2016) Charged particle energy spectra from laser-induced processes: Nuclear fusion in ultra-dense deuterium D(0). Int J Hydrogen Energy 41:1080–1088

    Article  CAS  Google Scholar 

  58. Prados-Estévez FM, Subashiev AV, Nee HH (2017) Strong screening by lattice confinement and resultant fusion reaction rates in fcc metals. Nucl Instrum Methods Phys Res B 407:67–72

    Article  CAS  Google Scholar 

  59. Tanabe K (2016) Plasmonic energy nanofocusing for high-efficiency laser fusion ignition.Jpn J Appl Phys 55:08RG01

    Google Scholar 

  60. Csernai LP, Kroo N, Papp I (2018) Radiation dominated implosion with nano-plasmonics. Laser Particle Beams 36:171–178

    Article  CAS  Google Scholar 

  61. Fukuoka N, Tanabe K (2019) Lightning-rod effect of plasmonic field enhancement on hydrogen-absorbing transition metals. Nanomaterials 9:1235

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuaki Tanabe .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanabe, K. (2022). Applications. In: Plasmonics for Hydrogen Energy. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-88275-4_6

Download citation

Publish with us

Policies and ethics