Abstract
Automatic grape detection is one of the first steps towards automatic yield estimation. This step is often performed with a computer vision algorithm using the classic feature extraction and classification approach. Many grape bunch detection algorithms have been proposed in the last decade and most of them follow this standard approach. An alternative is semantic segmentation with deep learning models. The main objective of this work is to compare existing algorithms based on machine learning to encoder-decoder segmentation models (UNet and PSPNet). The comparison was performed on two challenging datasets of white grape varieties in natural lighting conditions. The UNet model reached better performances on both datasets with up-to 0.76 IoU score (compared to 0.59 IoU for the second best model). UNet was combined to a linear model to estimate the total number of grape bunches in 200 plants and reached 86% counting accuracy. The results show that deep learning models are more robust to white grape detection compared to classic segmentation techniques. This is an important property for early yield estimation before veraison.
Keywords
- Grape detection
- Precision viticulture
- Deep learning
- Semantic segmentation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
References
Abdelghafour, F., Rosu, R., Keresztes, B., Germain, C., Da Costa, J.P.: A bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images. Comput. Electron. Agric. 158, 345–357 (2019). https://doi.org/10.1016/j.compag.2019.02.017
Aquino, A., Millan, B., Diago, M.P., Tardaguila, J.: Automated early yield prediction in vineyards from on-the-go image acquisition. Comput. Electron. Agric. 144, 26–36 (2018). https://doi.org/10.1016/j.compag.2017.11.026
Araya-Alman, M., et al.: A new localized sampling method to improve grape yield estimation of the current season using yield historical data. Precis. Agric. 20(2), 445–459 (2019). https://doi.org/10.1007/s11119-019-09644-y
Behroozi-Khazaei, N., Maleki, M.R.: A robust algorithm based on color features for grape cluster segmentation. Comput. Electron. Agric. 142, 41–49 (2017). https://doi.org/10.1016/j.compag.2017.08.025
Berenstein, R., Shahar, O.B., Shapiro, A., Edan, Y.: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 3(44), 233–243 (2010). https://doi.org/10.1007/s11370-010-0078-z
Bramley, R., Hamilton, R.: Understanding variability in winegrape production systems. Aust. J. Grape Wine Res. 10(1), 32–45 (2004). https://doi.org/10.1111/j.1755-0238.2004.tb00006.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-0238.2004.tb00006.x
Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998). https://doi.org/10.1023/A:1009715923555
Cecotti, H., Rivera, A., Farhadloo, M., Pedroza, M.A.: Grape detection with convolutional neural networks. Expert Syst. Appl. 159, 113588 (2020). https://doi.org/10.1016/j.eswa.2020.113588
Chamelat, R., Rosso, E., Choksuriwong, A., Rosenberger, C., Laurent, H., Bro, P.: Grape detection by image processing. In: IECON 2006–32nd Annual Conference on IEEE Industrial Electronics, pp. 3697–3702 (2006). https://doi.org/10.1109/IECON.2006.347704
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, pp. 2843–2851. NIPS 2012, Curran Associates Inc., Red Hook, NY, USA (2012)
Clingeleffer, P.R., Martin, S.R., Dunn, G.M., Krstic, M.P.: Crop development, crop estimation and crop control to secure quality and production of major wine grape varieties : a national approach : final report to Grape and Wine Research and Development Corporation/principal investigator, Peter Clingeleffer; [prepared and edited by Steve Martin and Gregory Dunn]. Adelaide, Grape and Wine Research and Development Corporation (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Dunn, G.M., Martin, S.R.: Yield prediction from digital image analysis: a technique with potential for vineyard assessments prior to harvest. Aust. J. Grape Wine Res. 10(33), 196–198 (2004). https://doi.org/10.1111/j.1755-0238.2004.tb00022.x
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504, https://www.sciencedirect.com/science/article/pii/S002200009791504X
Goldberg, D.E.: Genetic algorithms. Pearson Education India (2006)
Grimm, J., Herzog, K., Rist, F., Kicherer, A., Töpfer, R., Steinhage, V.: An adaptable approach to automated visual detection of plant organs with applications in grapevine breeding. Biosyst. Eng. 183, 170–183 (2019). https://doi.org/10.1016/j.biosystemseng.2019.04.018
Grossetete, M., Berthoumieu, Y., Da Costa, J.P., Germain, C., Lavialle, O., Grenier, G.: Early estimation of vineyard yield: site specific counting of berries by using a smartphone. In: International Conference on Agiculture Engineering (AgEng), pp. tabla137-C1915 (July 2012). https://hal.archives-ouvertes.fr/hal-00950298
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Heinrich, K., Roth, A., Breithaupt, L., Möller, B., Maresch, J.: Yield prognosis for the agrarian management of vineyards using deep learning for object counting. Wirtschaftsinformatik 2019 Proceedings, p. 15 (February 2019). https://aisel.aisnet.org/wi2019/track05/papers/3
Keresztes, B., Abdelghafour, F., Randriamanga, D., Da Costa, J.P., Germain, C.: Real-time fruit detection using deep neural networks. In: 14th International Conference on Precision Agriculture (2018). https://hal.archives-ouvertes.fr/hal-02518559
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, pp. 1097–1105. NIPS 2012, Curran Associates Inc., Red Hook, NY, USA (2012)
LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time Series, pp. 255–258. MIT Press, Cambridge, MA, USA (1998)
Liu, L., et al.: On the variance of the adaptive learning rate and beyond. CoRR abs/1908.03265 (2019). http://arxiv.org/abs/1908.03265
Liu, S., Zeng, X., Whitty, M.: A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field. Comput. Electron. Agric. 173, 11 (2020). https://doi.org/10.1016/j.compag.2020.105360
Luo, L., Tang, Y., Zou, X., Wang, C., Zhang, P., Feng, W.: Robust grape cluster detection in a vineyard by combining the adaboost framework and multiple color components. Sensors (Basel, Switzerland) 16(1212), 21 (2016). https://doi.org/10.3390/s16122098, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191078/
Millan, B., Velasco-Forero, S., Aquino, A., Tardaguila, J.: On-the-go grapevine yield estimation using image analysis and boolean model (December 2018). https://doi.org/10.1155/2018/9634752, https://www.hindawi.com/journals/js/2018/9634752/
Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Singh, S.: Automated visual yield estimation in vineyards. J. Field Robot. 31(55), 837–860 (2014). https://doi.org/10.1002/rob.21541
Reis, M.J.C.S., et al.: Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Log. 10(44), 285–290 (2012). https://doi.org/10.1016/j.jal.2012.07.004
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rudolph, R., Herzog, K., Töpfer, R., Steinhage, V.: Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using fully convolutional networks. arXiv:1807.03770 [cs] pp. 95–104 (July 2018). http://arxiv.org/abs/1807.03770, arXiv: 1807.03770
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)
Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020). https://doi.org/10.1016/j.compag.2020.105247
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
Vazquez-Fernandez, E., Dacal-Nieto, A., Martin, F., Formella, A., Torres-Guijarro, S., Gonzalez-Jorge, H.: A computer vision system for visual grape grading in wine cellars. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 335–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04667-4_34
Victorino, G., Maia, G., Queiroz, J., Braga, R., Marques, J., Lopes, C.: Grapevine yield prediction using image analysis - improving the estimation of non-visible bunches. European Federation for Information Technology in Agriculture, Food and the Environment (EFITA), p. 6 (2019)
Wada, K., LabelMe, K.: Image Polygonal Annotation with Python (2016). https://github.com/wkentaro/labelme
Yakubovskiy, P.: Segmentation models (2019). https://github.com/qubvel/segmentation_models
Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Kuhlmann, H., Roscher, R.: Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS J. Photogramm. Remote. Sens. 164, 73–83 (2020). https://doi.org/10.1016/j.isprsjprs.2020.04.002
Zhang, M.R., Lucas, J., Hinton, G.E., Ba, J.: Lookahead optimizer: k steps forward, 1 step back. CoRR abs/1907.08610 (2019). http://arxiv.org/abs/1907.08610
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. arXiv:1612.01105 [cs] (December 2016). http://arxiv.org/abs/1612.01105, arXiv: 1612.01105
Škrabánek, P.: Deepgrapes: precise detection of grapes in low-resolution images. IFAC-PapersOnLine 51(66), 185–189 (2018). https://doi.org/10.1016/j.ifacol.2018.07.151
Škrabánek, P., Doležel, P.: Robust grape detector based on svms and hog features. Comput. Intell. Neurosci. 2017, 3478602 (2017). https://doi.org/10.1155/2017/3478602
Acknowledgements
This work has been performed in the project AI4DI: Artificial Intelligence for Digitizing Industry, under grant agreement No 826060. The project is co-funded by grants from Germany, Austria, Finland, France, Norway, Latvia, Belgium, Italy, Switzerland, and the Czech Republic and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU).
We want to thank Vranken-Pommery Monopole, our partner in the AI4DI project, for allowing image collection in their vineyards. We also thank the ROMEO Computing Center (https://romeo.univ-reims.fr) of Université de Reims Champagne-Ardenne, whose Nvidia DGX-1 server allowed us to accelerate the training steps and compare several model approaches.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mohimont, L., Roesler, M., Rondeau, M., Gaveau, N., Alin, F., Steffenel, L.A. (2021). Comparison of Machine Learning and Deep Learning Methods for Grape Cluster Segmentation. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds) Smart and Sustainable Agriculture. SSA 2021. Communications in Computer and Information Science, vol 1470. Springer, Cham. https://doi.org/10.1007/978-3-030-88259-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-88259-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88258-7
Online ISBN: 978-3-030-88259-4
eBook Packages: Computer ScienceComputer Science (R0)