Skip to main content

Gaia-AgStream: An Explainable AI Platform for Mining Complex Data Streams in Agriculture

  • Conference paper
  • First Online:
Smart and Sustainable Agriculture (SSA 2021)

Abstract

We present a position paper about our concept for an artificial intelligence (AI) and data streaming platform for the agricultural sector. The goal of our project is to support agroecology in terms of carbon farming and biodiversity protection by providing an AI and data streaming platform called Gaia-AgStream that accelerates the adoption of AI in agriculture and is directly usable by farmers as well as agricultural companies in general. The technical innovations we propose focus on smart sensor networks, unified uncertainty management, explainable AI, root cause analysis and hybrid AI approaches. Our AI and data streaming platform concept contributes to the European open data infrastructure project Gaia-X in terms of interoperability for data and AI models as well as data sovereignty and AI infrastructure.

Our envisioned platform and the developed AI components for carbon farming and biodiversity will enable farmers to adopt sustainable and resilient production methods while establishing new and diverse revenue streams by monetizing carbon sequestration and AI ready data streams. The open and federated platform concept allows to bring together research, industry, agricultural start-ups and farmers in order to form sustainable innovation networks. We describe core concepts and architecture of our proposed approach in these contexts, outline practical use cases for our platform and finally outline challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://agstack.org/.

  2. 2.

    https://farmos.org/.

References

  1. Abele, L., Anic, M., Gutmann, T., Folmer, J., Kleinsteuber, M., Vogel-Heuser, B.: Combining knowledge modeling and machine learning for alarm root cause analysis. IFAC Proc. Vol. 46(9), 1843–1848 (2013)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  4. Atzmueller, M., Arnu, D., Schmidt, A.: Anomaly detection and structural analysis in industrial production environments. In: Data Science – Analytics and Applications, pp. 91–95. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-19287-7_13

    Chapter  Google Scholar 

  5. Atzmueller, M., Hayat, N., Schmidt, A., Klöpper, B.: Explanation-aware feature selection using symbolic time series abstraction: approaches and experiences in a petro-chemical production context. In: Proceedings of INDIN, pp. 799–804. IEEE (2017)

    Google Scholar 

  6. Atzmueller, M., et al.: Big data analytics for proactive industrial decision support. atp 58(9), 62–74 (2016)

    Article  Google Scholar 

  7. Atzmueller, M., Mollenhauer, D., Schmidt, A.: Big data analytics using local exceptionality detection. In: Enterprise Big Data Engineering, Analytics, and Management. IGI Global, Hershey (2016)

    Google Scholar 

  8. Atzmueller, M., Roth-Berghofer, T.: The mining and analysis continuum of explaining uncovered. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) SGAI 2010, pp. 273–278. Springer, London (2011). https://doi.org/10.1007/978-0-85729-130-1_20

    Chapter  Google Scholar 

  9. Bloemheuvel, S., van den Hoogen, J., Atzmueller, M.: Graph signal processing on complex networks for structural health monitoring. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2020. Studies in Computational Intelligence, vol. 943, pp. 249–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65347-7_21

    Chapter  Google Scholar 

  10. Bloemheuvel, S., Kloepper, B., Atzmueller, M.: Graph summarization for computational sensemaking on complex industrial event logs. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 417–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_34

    Chapter  Google Scholar 

  11. Boykin, K.G., Harings, N.M., Seamster, V.A., East, N.F., Guy, R.K., Andersen, M.C.: Methods for determining biodiversity metrics, focal species, and conservation practices for multi-scale analysis in support of the conservation effects assessment project (CEAP). United States Department of Agriculture - Natural Resources Conservation Service (2016)

    Google Scholar 

  12. Braud, A., Fromentoux, G., Radier, B., Grand, O.L.: The road to European digital sovereignty with Gaia-X and IDSA. IEEE Netw. 35(2), 4–5 (2021)

    Article  Google Scholar 

  13. Brockmann, W., Buschermöhle, A., Schoenke, J.H.: Cobra-a generic architecture for robust treatment of uncertain information. INFORMATIK 2013-Informatik angepasst an Mensch, Organisation und Umwelt (2013)

    Google Scholar 

  14. Buschermöhle, A., Schoenke, J., Brockmann, W.: Uncertainty and trust estimation in incrementally learning function approximation. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 297, pp. 32–41. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31709-5_4

    Chapter  Google Scholar 

  15. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proc. AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  16. Falih, I., Grozavu, N., Kanawati, R., Bennani, Y.: A recommendation system based on unsupervised topological learning. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 224–232. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_26

    Chapter  Google Scholar 

  17. Gade, K., Geyik, S., Kenthapadi, K., Mithal, V., Taly, A.: Explainable AI in industry: Practical challenges and lessons learned. In: Companion Proceedings of the Web Conference 2020, pp. 303–304 (2020)

    Google Scholar 

  18. Gbodjo, Y.J.E., Ienco, D., Leroux, L., Interdonato, R., Gaetano, R.: Fine grained classification for multi-source land cover mapping. arXiv:2004.01963 (2020)

  19. van den Hoogen, J., Bloemheuvel, S., Atzmueller, M.: An Improved wide-kernel CNN for classifying multivariate signals in fault diagnosis. In: Proceedings of 2020 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE (2020)

    Google Scholar 

  20. Ienco, D., Interdonato, R., Gaetano, R., Minh, D.H.T.: Combining sentinel-1 and sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote. Sens. 158, 11–22 (2019)

    Article  Google Scholar 

  21. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., Sala, A.: Feature-rich networks: going beyond complex network topologies. Appl. Netw. Sci. 4(1), 1–13 (2019). https://doi.org/10.1007/s41109-019-0111-x

    Article  Google Scholar 

  22. Interdonato, R., Ienco, D., Gaetano, R., Ose, K.: Duplo: a dual view point deep learning architecture for time series classification. ISPRS J. Photogramm. Remote. Sens. 149, 91–104 (2019)

    Article  Google Scholar 

  23. Interdonato, R., Magnani, M., Perna, D., Tagarelli, A., Vega, D.: Multilayer network simplification: approaches, models and methods. Comput. Sci. Rev. 36, 100246 (2020)

    Article  MathSciNet  Google Scholar 

  24. IPBES: The global assessment report on biodiversity and ecosystem services - summary for policymakers (2019). https://doi.org/10.5281/zenodo.3553579

  25. Kanawati, R., Atzmueller, M.: Modeling and mining feature-rich networks. In: Proceedings of WWW 2019 (Companion). IW3C2/ACM (2019)

    Google Scholar 

  26. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In: Proceedings of of 20th International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8. Rhodes Island, Greece (2006). https://doi.org/10.1109/IPDPS.2006.1639412

  27. Rehman, A.U., Abbasi, A.Z., Islam, N., Shaikh, Z.A.: A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 36(2), 263–270 (2014). https://doi.org/10.1016/j.csi.2011.03.004

    Article  Google Scholar 

  28. Schoenke, J.H., Brockmann, W.: Robustification of self-optimising systems via explicit treatment of uncertain information. In: 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), pp. 152–161. Atlantis Press (2015)

    Google Scholar 

  29. Schwenke, L., Atzmueller, M.: Show me what you’re looking for: visualizing abstracted transformer attention for enhancing their local interpretability on time series data. In: Proceedings of 34th International Florida Artificial Intelligence Research Society Conference. FLAIRS, North Miami Beach (2021)

    Google Scholar 

  30. Trousse, B., Jaczynski, M., Kanawati, R.: Using user behaviour similarity for recommendation computation: the broadway approach. In: HCI (2), pp. 85–89 (1999)

    Google Scholar 

  31. Tsakiridis, N.L., et al.: Versatile internet of things for agriculture: an eXplainable AI approach. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 584, pp. 180–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_16

    Chapter  Google Scholar 

  32. Vasisht, D., et al.: FarmBeats: an IoT platform for data-driven agriculture. In: Proceedings of of the 14th USENIX Conference on Networked Systems Design and Implementation (NSDI), Boston, MA, USA, pp. 515–528 (2017)

    Google Scholar 

  33. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  34. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schoenke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schoenke, J. et al. (2021). Gaia-AgStream: An Explainable AI Platform for Mining Complex Data Streams in Agriculture. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds) Smart and Sustainable Agriculture. SSA 2021. Communications in Computer and Information Science, vol 1470. Springer, Cham. https://doi.org/10.1007/978-3-030-88259-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88259-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88258-7

  • Online ISBN: 978-3-030-88259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics