Abstract
Deep learning (DL) is a hot trend for object detection and segmentation, thanks to the use of Deep Neural Networks (DNNs). Image recognition is a powerful tool for precision viticulture, having a strong potential in cases such as yield estimation and automatic quality estimation of the grapes. Developing the models is one part of the problem, deploying them in the field, at the edge of the network, is another problem that comes with its own constraints. This paper studies the use of embedded devices to run Deep Neural Network algorithms for real-time grape segmentation at the wine press.
Keywords
- Grape detection
- Precision viticulture
- Deep learning
- Edge computing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
NVIDIA TensorRT (2016). https://developer.nvidia.com/tensorrt
CEA-LIST/N2D2 (2021). https://github.com/CEA-LIST/N2D2. Original-date: 2017–01-06T13:01:02Z
Aquino, A., Barrio, I., Diago, M.P., Millan, B., Tardaguila, J.: vitisBerry: an android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput. Electron. Agric. 148, 19–28 (2018)
Aquino, A., Millan, B., Diago, M.P., Tardaguila, J.: Automated early yield prediction in vineyards from on-the-go image acquisition. Comput. Electron. Agric. 144, 26–36 (2018). https://doi.org/10.1016/j.compag.2017.11.026
Aquino, A., Millan, B., Gaston, D., Diago, M.P., Tardaguila, J.: vitisFlower®: development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques. Sensors 15(9), 21204–21218 (2015)
Behroozi-Khazaei, N., Maleki, M.R.: A robust algorithm based on color features for grape cluster segmentation. Comput. Electron. Agric. 142, 41–49 (2017). https://doi.org/10.1016/j.compag.2017.08.025
Cecotti, H., Rivera, A., Farhadloo, M., Pedroza, M.A.: Grape detection with convolutional neural networks. Expert Syst. Appl. 159, 113588 (2020). https://doi.org/10.1016/j.eswa.2020.113588
Chamelat, R., Rosso, E., Choksuriwong, A., Rosenberger, C., Laurent, H., Bro, P.: Grape detection by image processing. In: IECON 2006–32nd Annual Conference on IEEE Industrial Electronics, pp. 3697–3702 (2006). https://doi.org/10.1109/IECON.2006.347704
Dunn, G.M., Martin, S.R.: Yield prediction from digital image analysis: a technique with potential for vineyard assessments prior to harvest. Aust. J. Grape Wine Res. 10(33), 196–198 (2004). https://doi.org/10.1111/j.1755-0238.2004.tb00022.x
Grimm, J., Herzog, K., Rist, F., Kicherer, A., Töpfer, R., Steinhage, V.: An adaptable approach to automated visual detection of plant organs with applications in grapevine breeding. Biosys. Eng. 183, 170–183 (2019). https://doi.org/10.1016/j.biosystemseng.2019.04.018
Grossetete, M., Berthoumieu, Y., Da Costa, J.P., Germain, C., Lavialle, O., Grenier, G.: Early estimation of vineyard yield: site specific counting of berries by using a smartphone. In: International Conference on Agiculture Engineering (AgEng), pp. tabla137-C1915 (2012). https://hal.archives-ouvertes.fr/hal-00950298
Heinrich, K., Roth, A., Breithaupt, L., Möller, B., Maresch, J.: Yield prognosis for the agrarian management of vineyards using deep learning for object counting. In: Wirtschaftsinformatik 2019 Proceedings p. 15 (2019). https://aisel.aisnet.org/wi2019/track05/papers/3
Keresztes, B., Abdelghafour, F., Randriamanga, D., Da Costa, J.P., Germain, C.: Real-time fruit detection using deep neural networks. In: 14th International Conference on Precision Agriculture (2018). https://hal.archives-ouvertes.fr/hal-02518559
Liu, S., Marden, S., Whitty, M.: Towards automated yield estimation in viticulture. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia, p. 9 (2013)
Liu, S., Zeng, X., Whitty, M.: A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field. Comput. Electron. Agric. 173, 11 (2020). https://doi.org/10.1016/j.compag.2020.105360
Luo, L., Tang, Y., Zou, X., Wang, C., Zhang, P., Feng, W.: Robust grape cluster detection in a vineyard by combining the adaboost framework and multiple color components. Sensors (Basel, Switzerland) 16(1212), 21 (2016)
Maldonado, W., Barbosa, J.C.: Automatic green fruit counting in orange trees using digital images. Comput. Electron. Agric. 127, 572–581 (2016)
Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Singh, S.: Automated visual yield estimation in vineyards. J. Field Robot. 31(55), 837–860 (2014). https://doi.org/10.1002/rob.21541
Reis, M.J.C.S., et al.: Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Logic 10(44), 285–290 (2012). https://doi.org/10.1016/j.jal.2012.07.004
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rudolph, R., Herzog, K., Töpfer, R., Steinhage, V.: Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using fully convolutional networks. arXiv:1807.03770 [cs], pp. 95–104 (2018)
Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020). https://doi.org/10.1016/j.compag.2020.105247
Song, Y., Glasbey, C., Horgan, G., Polder, G., Dieleman, J., van der Heijden, G.: Automatic fruit recognition and counting from multiple images. Biosyst. Eng. 118, 203–215 (2014)
Yakubovskiy, P.: Segmentation models (2019). https://github.com/qubvel/segmentation_models
Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Kuhlmann, H., Roscher, R.: Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS J. Photogramm. Remote. Sens. 164, 73–83 (2020). https://doi.org/10.1016/j.isprsjprs.2020.04.002
Acknowledgments
This work has been performed in the project AI4DI: Artificial Intelligence for Digitizing Industry, under grant agreement No 826060. The project is co-funded by grants from Germany, Austria, Finland, France, Norway, Latvia, Belgium, Italy, Switzerland, and the Czech Republic and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU).
We also would like to thank the ROMEO Computing Center (https://romeo.univ-reims.fr) of the University of Reims Champagne-Ardenne, where part of the models were developed, and Vranken-Pommery Monopole, our partner in the AI4DI project, for allowing image collection in their vineyards and facilities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Roesler, M., Mohimont, L., Alin, F., Gaveau, N., Steffenel, L.A. (2021). Deploying Deep Neural Networks on Edge Devices for Grape Segmentation. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds) Smart and Sustainable Agriculture. SSA 2021. Communications in Computer and Information Science, vol 1470. Springer, Cham. https://doi.org/10.1007/978-3-030-88259-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-88259-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88258-7
Online ISBN: 978-3-030-88259-4
eBook Packages: Computer ScienceComputer Science (R0)