Skip to main content

Deploying Deep Neural Networks on Edge Devices for Grape Segmentation

Part of the Communications in Computer and Information Science book series (CCIS,volume 1470)

Abstract

Deep learning (DL) is a hot trend for object detection and segmentation, thanks to the use of Deep Neural Networks (DNNs). Image recognition is a powerful tool for precision viticulture, having a strong potential in cases such as yield estimation and automatic quality estimation of the grapes. Developing the models is one part of the problem, deploying them in the field, at the edge of the network, is another problem that comes with its own constraints. This paper studies the use of embedded devices to run Deep Neural Network algorithms for real-time grape segmentation at the wine press.

Keywords

  • Grape detection
  • Precision viticulture
  • Deep learning
  • Edge computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NVIDIA TensorRT (2016). https://developer.nvidia.com/tensorrt

  2. CEA-LIST/N2D2 (2021). https://github.com/CEA-LIST/N2D2. Original-date: 2017–01-06T13:01:02Z

  3. Aquino, A., Barrio, I., Diago, M.P., Millan, B., Tardaguila, J.: vitisBerry: an android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Comput. Electron. Agric. 148, 19–28 (2018)

    CrossRef  Google Scholar 

  4. Aquino, A., Millan, B., Diago, M.P., Tardaguila, J.: Automated early yield prediction in vineyards from on-the-go image acquisition. Comput. Electron. Agric. 144, 26–36 (2018). https://doi.org/10.1016/j.compag.2017.11.026

    CrossRef  Google Scholar 

  5. Aquino, A., Millan, B., Gaston, D., Diago, M.P., Tardaguila, J.: vitisFlower®: development and testing of a novel android-smartphone application for assessing the number of grapevine flowers per inflorescence using artificial vision techniques. Sensors 15(9), 21204–21218 (2015)

    CrossRef  Google Scholar 

  6. Behroozi-Khazaei, N., Maleki, M.R.: A robust algorithm based on color features for grape cluster segmentation. Comput. Electron. Agric. 142, 41–49 (2017). https://doi.org/10.1016/j.compag.2017.08.025

    CrossRef  Google Scholar 

  7. Cecotti, H., Rivera, A., Farhadloo, M., Pedroza, M.A.: Grape detection with convolutional neural networks. Expert Syst. Appl. 159, 113588 (2020). https://doi.org/10.1016/j.eswa.2020.113588

    CrossRef  Google Scholar 

  8. Chamelat, R., Rosso, E., Choksuriwong, A., Rosenberger, C., Laurent, H., Bro, P.: Grape detection by image processing. In: IECON 2006–32nd Annual Conference on IEEE Industrial Electronics, pp. 3697–3702 (2006). https://doi.org/10.1109/IECON.2006.347704

  9. Dunn, G.M., Martin, S.R.: Yield prediction from digital image analysis: a technique with potential for vineyard assessments prior to harvest. Aust. J. Grape Wine Res. 10(33), 196–198 (2004). https://doi.org/10.1111/j.1755-0238.2004.tb00022.x

    CrossRef  Google Scholar 

  10. Grimm, J., Herzog, K., Rist, F., Kicherer, A., Töpfer, R., Steinhage, V.: An adaptable approach to automated visual detection of plant organs with applications in grapevine breeding. Biosys. Eng. 183, 170–183 (2019). https://doi.org/10.1016/j.biosystemseng.2019.04.018

    CrossRef  Google Scholar 

  11. Grossetete, M., Berthoumieu, Y., Da Costa, J.P., Germain, C., Lavialle, O., Grenier, G.: Early estimation of vineyard yield: site specific counting of berries by using a smartphone. In: International Conference on Agiculture Engineering (AgEng), pp. tabla137-C1915 (2012). https://hal.archives-ouvertes.fr/hal-00950298

  12. Heinrich, K., Roth, A., Breithaupt, L., Möller, B., Maresch, J.: Yield prognosis for the agrarian management of vineyards using deep learning for object counting. In: Wirtschaftsinformatik 2019 Proceedings p. 15 (2019). https://aisel.aisnet.org/wi2019/track05/papers/3

  13. Keresztes, B., Abdelghafour, F., Randriamanga, D., Da Costa, J.P., Germain, C.: Real-time fruit detection using deep neural networks. In: 14th International Conference on Precision Agriculture (2018). https://hal.archives-ouvertes.fr/hal-02518559

  14. Liu, S., Marden, S., Whitty, M.: Towards automated yield estimation in viticulture. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia, p. 9 (2013)

    Google Scholar 

  15. Liu, S., Zeng, X., Whitty, M.: A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field. Comput. Electron. Agric. 173, 11 (2020). https://doi.org/10.1016/j.compag.2020.105360

    CrossRef  Google Scholar 

  16. Luo, L., Tang, Y., Zou, X., Wang, C., Zhang, P., Feng, W.: Robust grape cluster detection in a vineyard by combining the adaboost framework and multiple color components. Sensors (Basel, Switzerland) 16(1212), 21 (2016)

    Google Scholar 

  17. Maldonado, W., Barbosa, J.C.: Automatic green fruit counting in orange trees using digital images. Comput. Electron. Agric. 127, 572–581 (2016)

    CrossRef  Google Scholar 

  18. Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Singh, S.: Automated visual yield estimation in vineyards. J. Field Robot. 31(55), 837–860 (2014). https://doi.org/10.1002/rob.21541

    CrossRef  Google Scholar 

  19. Reis, M.J.C.S., et al.: Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Logic 10(44), 285–290 (2012). https://doi.org/10.1016/j.jal.2012.07.004

    CrossRef  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    CrossRef  Google Scholar 

  21. Rudolph, R., Herzog, K., Töpfer, R., Steinhage, V.: Efficient identification, localization and quantification of grapevine inflorescences in unprepared field images using fully convolutional networks. arXiv:1807.03770 [cs], pp. 95–104 (2018)

  22. Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020). https://doi.org/10.1016/j.compag.2020.105247

    CrossRef  Google Scholar 

  23. Song, Y., Glasbey, C., Horgan, G., Polder, G., Dieleman, J., van der Heijden, G.: Automatic fruit recognition and counting from multiple images. Biosyst. Eng. 118, 203–215 (2014)

    CrossRef  Google Scholar 

  24. Yakubovskiy, P.: Segmentation models (2019). https://github.com/qubvel/segmentation_models

  25. Zabawa, L., Kicherer, A., Klingbeil, L., Töpfer, R., Kuhlmann, H., Roscher, R.: Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS J. Photogramm. Remote. Sens. 164, 73–83 (2020). https://doi.org/10.1016/j.isprsjprs.2020.04.002

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work has been performed in the project AI4DI: Artificial Intelligence for Digitizing Industry, under grant agreement No 826060. The project is co-funded by grants from Germany, Austria, Finland, France, Norway, Latvia, Belgium, Italy, Switzerland, and the Czech Republic and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU).

We also would like to thank the ROMEO Computing Center (https://romeo.univ-reims.fr) of the University of Reims Champagne-Ardenne, where part of the models were developed, and Vranken-Pommery Monopole, our partner in the AI4DI project, for allowing image collection in their vineyards and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Angelo Steffenel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roesler, M., Mohimont, L., Alin, F., Gaveau, N., Steffenel, L.A. (2021). Deploying Deep Neural Networks on Edge Devices for Grape Segmentation. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds) Smart and Sustainable Agriculture. SSA 2021. Communications in Computer and Information Science, vol 1470. Springer, Cham. https://doi.org/10.1007/978-3-030-88259-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88259-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88258-7

  • Online ISBN: 978-3-030-88259-4

  • eBook Packages: Computer ScienceComputer Science (R0)