Skip to main content

Development of Soil Nitrogen Estimation System in Oil Palm Land with Sentinel-1 Image Analysis Approach

  • Conference paper
  • First Online:
Smart and Sustainable Agriculture (SSA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1470))

Included in the following conference series:

Abstract

Oil palm is one of the plantation commodities that has an important role in the economy of Indonesia. The high demand for palm oil in the future must be supported by high productivity. Fertilization is one of the intensification methods to increase oil palm productivity. The main nutrient content in oil palm that helps the growth and development of oil palm is nitrogen. Soil samples and location coordinates were taken from oil palm plantations then adjusted to Sentinel-1 satellite images. The Sentinel-1 image obtained is then processed first to reduce the factors that aggravate the process afterward. The digital number value obtained from the reflection of the Sentinel-1 image was then used as an independent variable and the soil nitrogen results from the laboratory become the dependent variable. Data were trained and a model was built using Random Forest Regressor (RFR) and Multi Linear Regression (MLR). All models built were evaluated by the quality of the model using MAPE and the best model was determined by selecting the lowest MAPE. RFR model has 19.53% of MAPE and MLR has 22.41% of MAPE. The RFR is chosen to be the best model based on the lowest MAPE and based on interpretation, the RFR model has good accuracy for determining soil nitrogen nutrient content better than MLR model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badan Pusat Statistik: Statistik Kelapa Sawit Indonesia 2018 (2019)

    Google Scholar 

  2. Goh, K.J., Teo, C.B., Chew, P.S., Chiu, S.B.: Fertiliser Management in Oil Palm - Agronomic Principles and Field Practices (1998)

    Google Scholar 

  3. Safuan, L.O., Rembon, F.S., Syaf, H.: Evaluasi Status Hara Tanah dan Jaringan Sebagai Dasar Rekomendasi Pemupukan N,P, dan K pada Tanaman Kelapa Sawit. Agriplus. 23, 154–162 (2013)

    Google Scholar 

  4. Fageria, V.D.: Nutrient interactions in crop plants. J. Plant Nutr. 24, 1269–1290 (2001). https://doi.org/10.1081/PLN-100106981

    Article  Google Scholar 

  5. Ge, Y., Thomasson, J.A., Sui, R.: Remote sensing of soil properties in precision agriculture: a review. Front. Earth Sci. (2011). https://doi.org/10.1007/s11707-011-0175-0

  6. Muñoz-Huerta, R., Guevara-Gonzalez, R., Contreras-Medina, L., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R.: A review of methods for sensing the nitrogen status in plants: advantages. Disadv. Recent Adv. Sens. 13, 10823–10843 (2013). https://doi.org/10.3390/s130810823

    Article  Google Scholar 

  7. Shafri, H.Z.M., Hamdan, N., Izzuddin Anuar, M.: Detection of stressed oil palms from an airborne sensor using optimized spectral indices. Int. J. Remote Sens. 33, 4293–4311 (2012). https://doi.org/10.1080/01431161.2011.619208

  8. Ahamed, T., Tian, L., Zhang, Y., Ting, K.C.: A review of remote sensing methods for biomass feedstock production. Biomass Bioenerg 35, 2455–2469 (2011). https://doi.org/10.1016/j.biombioe.2011.02.028

    Article  Google Scholar 

  9. Lu, D.: The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27, 1297–1328 (2006). https://doi.org/10.1080/01431160500486732

    Article  Google Scholar 

  10. Lillesand, T.M., Kiefer, R.W.: Remote Sensing and Image Interpretation 4th Edition (1999)

    Google Scholar 

  11. Sutanto, A., Trisakti, B.: Perbandingan Klasifikasi Berbasis Obyek dan Klasifikasi Berbasis Piksel pada Data Citra Satelit Synthetic Aperture Radar untuk Pemetaan Lahan. 11, 13 (2014)

    Google Scholar 

  12. Tranmer, M., Murphy, J., Elliot, M., Pampaka, M.: Multiple Linear Regression (2nd Edition), p. 59 (2020)

    Google Scholar 

  13. Breiman, L.: Random forest. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  14. Wang, L., Zhou, X., Zhu, X., Dong, Z., Guo, W.: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 4, 212–219 (2016). https://doi.org/10.1016/j.cj.2016.01.008

    Article  Google Scholar 

  15. Pahan, I.: Paduan Lengkap Kelapa Sawit. Penebar Swadaya, Jakarta (2007)

    Google Scholar 

  16. Barker, A.V., Pilbeam, D.J.: Handbook of Plant Nutrition. CRC PRess, Florida (2007)

    Google Scholar 

  17. Esetlili, M.T., Kurucu, Y.: Determination of main soil properties using synthetic aperture radar. Fresenius Environ. Bull. 25, 23–36 (2016)

    Google Scholar 

  18. Ulaby, F.T., Bush, T.F., Batlivala, P.P.: Radar response to vegetation II: 8-18 GHZ Band. IEEEE Trans. Antennas Propag. 23, 608–614 (1975)

    Google Scholar 

  19. Vincent, P., Bourbigot, M., Johnsen, H., Piantanida, R.: Sentinel-1 Product Specification (2020)

    Google Scholar 

  20. Sivasankar, T., Kumar, D., Srivastava, H.S., Patel, P.: Advances in radar remote sensing of agricultural crops: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 1126 (2018). https://doi.org/10.18517/ijaseit.8.4.5797

  21. Lazecky, M., Lhota, S., Penaz, T., Klushina, D.: Application of Sentinel-1 satellite to identify oil palm plantations in Balikpapan Bay. IOP Conf. Ser. Earth Environ. Sci. 169, 012064 (2018). https://doi.org/10.1088/1755-1315/169/1/012064

  22. Dalal, R.C., Henry, R.J.: Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 50, 120–123 (1986). https://doi.org/10.2136/sssaj1986.03615995005000010023x

    Article  Google Scholar 

  23. Morra, M.J., Hall, M.H., Freeborn, L.L.: Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 55, 288–291 (1991). https://doi.org/10.2136/sssaj1991.03615995005500010051x

    Article  Google Scholar 

  24. Ehsani, M.R., Upadhyaya, S.K., Slaughter, D., Shafii, S., Pelletier, M.: A NIR technique for rapid determination of soil mineral nitrogen. Precis Agric. 1, 18 (1999)

    Article  Google Scholar 

  25. Harfenmeister, K., Spengler, D., Weltzien, C.: Analyzing temporal and spatial characteristics of crop parameters using Sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019). https://doi.org/10.3390/rs11131569

    Article  Google Scholar 

  26. Kaliana, I.: Development of a decision support system for oil palm fertilizer requirement based on precision agriculture (2018)

    Google Scholar 

  27. Matloff, N.: Statistical Regression and Classification From Linear Models to Machine Learning. CRC Press, Davis(US) (2017)

    Book  Google Scholar 

  28. Breusch, T.S., Pagan, A.R.: A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287 (1979). https://doi.org/10.2307/1911963

    Article  MathSciNet  MATH  Google Scholar 

  29. Dietterich, T.G., Arbib, M.A.: The Handbook of Brain Theory and Neural Network, 2nd edn. MIT Press, Cambridge (2002)

    Google Scholar 

  30. Liaw, A., Wiener, M.: Classification and Regression by random Forest, vol. 2, p. 6 (2002)

    Google Scholar 

  31. Montaño Moreno, J.J., Palmer Pol, A., Sesé Abad, A.: Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema 500–506 (2013). https://doi.org/10.7334/psicothema2013.23

  32. Lewis, C.D.: Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Scientific (1982)

    Google Scholar 

  33. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Massachusetts (US) (2010)

    MATH  Google Scholar 

  34. Filipponi, F.: Sentinel-1 GRD preprocessing workflow. In: Proceedings, vol. 18, p. 11 (2019).https://doi.org/10.3390/ECRS-3-06201

  35. Serikat Petani Kelapa Sawit: Dokumen SOP Agronomi Ini Untuk Petani Kalapa Sawit (2016)

    Google Scholar 

  36. Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E.B., Turaga, D.: Learning Feature Engineering for Classification. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 2529–2535. International Joint Conferences on Artificial Intelligence Organization, Melbourne, Australia (2017). https://doi.org/10.24963/ijcai.2017/352

  37. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis. Pearson Education Limited, London (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budiman, R., Seminar, K.B., Sudradjat (2021). Development of Soil Nitrogen Estimation System in Oil Palm Land with Sentinel-1 Image Analysis Approach. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds) Smart and Sustainable Agriculture. SSA 2021. Communications in Computer and Information Science, vol 1470. Springer, Cham. https://doi.org/10.1007/978-3-030-88259-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88259-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88258-7

  • Online ISBN: 978-3-030-88259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics