Skip to main content

Comparative Study of Physiological Signals from Empatica E4 Wristband for Stress Classification

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2021)

Abstract

The injurious effects of mental stress on the human body and mind are well known. Many researchers have focused on developing stress monitoring systems using physiological signals obtained from the body to alleviate stress. This study aims to provide a comparative analysis of four physiological signals – Electrodermal Activity (EDA), Heart Rate (HR), Skin Temperature (SKT), and Blood Volume Pulse (BVP), recorded using the Empatica E4 Wristband, in building stress classification models. We collect a dataset on 21 participants comprising their physiological signals while they perform a mental arithmetic task, which acts as a stress inducer. We compare the classification accuracy of machine learning classifiers trained on feature sets built using the four signals taken one at a time, two at a time, three at a time and all together. We achieve the highest accuracy of 99.92% using all the four signals. When we consider three signals at a time, EDA, HR, and BVP feature set achieves the best accuracy of 99.88%, and taking two signals at a time, EDA and HR feature set obtains the best accuracy of 99.09%. This paper can act as a guide for a manufacturer to select an optimal set of physiological signals for building efficient stress monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., Tsiknakis, M.: Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput. (2019)

    Google Scholar 

  2. Al-shargie, F.M., Tang, T.B., Badruddin, N., Kiguchi, M.: Mental stress quantification using EEG signals. In: Ibrahim, F., Usman, J., Mohktar, M.S., Ahmad, M.Y. (eds.) International Conference for Innovation in Biomedical Engineering and Life Sciences. IP, vol. 56, pp. 15–19. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0266-3_4

    Chapter  Google Scholar 

  3. Priya, T.H., Mahalakshmi, P., Naidu, V.P.S., Srinivas, M.: Stress detection from EEG using power ratio. In: International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1–6. IEEE (2020)

    Google Scholar 

  4. Pourmohammadi, S., Maleki, A.: Stress detection using ECG and EMG signals: a comprehensive study. Comput. Methods Programs Biomed. 193, 105482 (2020)

    Article  Google Scholar 

  5. Nath, R.K., Thapliyal, H., Caban-Holt, A., Mohanty, S.P.: Machine learning based solutions for real-time stress monitoring. IEEE Consum. Electron. Mag. 9(5), 34–41 (2020)

    Article  Google Scholar 

  6. Sandulescu, V., Andrews, S., Ellis, D., Bellotto, N., Mozos, O.M.: Stress detection using wearable physiological sensors. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 526–532. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18914-7_55

    Chapter  Google Scholar 

  7. Birkett, M.A.: The Trier Social Stress Test protocol for inducing psychological stress. J. Vis. Exp. JoVE (56) (2011)

    Google Scholar 

  8. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing wesad, a multimodal dataset for wearable stress and affect detection. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction, pp. 400–408 (2018)

    Google Scholar 

  9. Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: Continuous stress detection using a wrist device: in laboratory and real life. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1185–1193 (2016)

    Google Scholar 

  10. Can, Y.S., et al.: Real-life stress level monitoring using smart bands in the light of contextual information. IEEE Sens. J. 20(15), 8721–8730 (2020)

    Article  Google Scholar 

  11. Mozos, O.M., et al.: Stress detection using wearable physiological and sociometric sensors. Int. J. Neural Syst. 27(02), 1650041 (2017)

    Article  Google Scholar 

  12. Minguillon, J., Perez, E., Lopez-Gordo, M.A., Pelayo, F., Sanchez-Carrion, M.J.: Portable system for real-time detection of stress level. Sensors 18(8), 2504 (2018)

    Article  Google Scholar 

  13. Huysmans, D., et al.: Unsupervised learning for mental stress detection-exploration of self-organizing maps. In: 2018 Proceedings of Biosignals, vol. 4, pp. 26–35 (2018)

    Google Scholar 

  14. Vila, G., Godin, C., Charbonnier, S., Labyt, E., Sakri, O., Campagne, A.: Pressure-specific feature selection for acute stress detection from physiological recordings. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2341–2346. IEEE (2018)

    Google Scholar 

  15. Dedovic, K., Renwick, R., Mahani, N.K., Engert, V., Lupien, S.J., Pruessner, J.C.: The montreal imaging stress task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30(5), 319 (2005)

    Google Scholar 

  16. Jun, G., Smitha, K.G.: EEG based stress level identification. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 003270–003274. IEEE (2016)

    Google Scholar 

  17. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra, V., Priyarup, A., Sethia, D. (2021). Comparative Study of Physiological Signals from Empatica E4 Wristband for Stress Classification. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-030-88244-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88244-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88243-3

  • Online ISBN: 978-3-030-88244-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics