Skip to main content

Scalable Semi-supervised Landmark Localization for X-ray Images Using Few-Shot Deep Adaptive Graph

  • 979 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 13003)

Abstract

Landmark localization plays an important role in medical image analysis. Learning based methods, including convolutional neural network (CNN) and graph convolutional network (GCN), have demonstrated the state-of-the-art performance. However, most of these methods are fully-supervised and heavily rely on manual labeling of a large training dataset. In this paper, based on a fully-supervised graph-based method, deep adaptive graph (DAG), we proposed a semi-supervised extension of it, termed few-shot DAG, i.e., five-shot DAG. It first trains a DAG model on the labeled data and then fine-tunes the pre-trained model on the unlabeled data with a teacher-student semi-supervised learning (SSL) mechanism. In addition to the semi-supervised loss, we propose another loss using Jensen–Shannon (JS) divergence to regulate the consistency of the intermediate feature maps. We extensively evaluated our method on pelvis, hand and chest landmark detection tasks. Our experiment results demonstrate consistent and significant improvements over previous methods.

Keywords

  • Few-shot learning
  • GCN
  • Landmark localization
  • X-ray images
  • Deep adaptive graph
  • Few-shot DAG

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-88210-5_13
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-88210-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Cui, W., et al.: Semi-supervised brain lesion segmentation with an adapted mean teacher model. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 554–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_43

    CrossRef  Google Scholar 

  2. Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: CVPR, pp. 1546–1555 (2018)

    Google Scholar 

  3. Juneja, M., et al.: A review on cephalometric landmark detection techniques. Biomed. Signal Process. Control 66, 102486 (2021)

    CrossRef  Google Scholar 

  4. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  5. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, vol. 3 (2013)

    Google Scholar 

  6. Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. arXiv preprint arXiv:2004.08190 (2020)

  7. Lu, Y., et al.: Learning to segment anatomical structures accurately from one exemplar. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 678–688. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_66

    CrossRef  Google Scholar 

  8. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: CVPR, pp. 3317–3326 (2017)

    Google Scholar 

  9. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based cnns for landmark localization. Media 54, 207–219 (2019)

    Google Scholar 

  10. Raju, A., et al.: Co-heterogeneous and adaptive segmentation from multi-source and multi-phase CT imaging data: a study on pathological liver and lesion segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 448–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_27

    CrossRef  Google Scholar 

  11. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv preprint arXiv:2005.04757 (2020)

  12. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5693–5703 (2019)

    Google Scholar 

  13. Tang, X., Guo, F., Shen, J., Du, T.: Facial landmark detection by semi-supervised deep learning. Neurocomputing 297, 22–32 (2018)

    CrossRef  Google Scholar 

  14. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS, pp. 1195–1204 (2017)

    Google Scholar 

  15. Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: a recurrent process applied for end-to-end face alignment. In: CVPR, pp. 4177–4187 (2016)

    Google Scholar 

  16. Valle, R., Buenaposada, J.M., Valdes, A., Baumela, L.: A deeply-initialized coarse-to-fine ensemble of regression trees for face alignment. In: ECCV, pp. 585–601 (2018)

    Google Scholar 

  17. Wang, Y., et al.: Knowledge distillation with adaptive asymmetric label sharpening for semi-supervised fracture detection in chest x-rays. arXiv preprint arXiv:2012.15359 (2020)

  18. Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. IJCV 127(2), 115–142 (2019)

    CrossRef  Google Scholar 

  19. Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4

    CrossRef  Google Scholar 

  20. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. TPAMI 38(5), 918–930 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 665 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zhou, XY. et al. (2021). Scalable Semi-supervised Landmark Localization for X-ray Images Using Few-Shot Deep Adaptive Graph. In: , et al. Deep Generative Models, and Data Augmentation, Labelling, and Imperfections. DGM4MICCAI DALI 2021 2021. Lecture Notes in Computer Science(), vol 13003. Springer, Cham. https://doi.org/10.1007/978-3-030-88210-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88210-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88209-9

  • Online ISBN: 978-3-030-88210-5

  • eBook Packages: Computer ScienceComputer Science (R0)