Skip to main content

Recent Advancements in Advanced Composites for Aerospace Applications: A Review

  • Chapter
  • First Online:
Advanced Composites in Aerospace Engineering Applications

Abstract

Continual development and establishment of innovative materials in aerospace applications intends at reduction in weight, improved fuel efficiency, superior performance, and decreased cost. Progress of engineering materials for aerospace application affects both financial and ecological issues. Latest developments in advanced composites impact aerospace applications, due to superior strength-to-weight ratio, wear resistance, and thermal resistance compared to conventional materials. Composite materials, due to their unique features, lighter weight, high fatigue strength, and anticorrosion resistance, have begun to be used more prominently for almost a decade to produce wings and fuselages in major commercial aircraft. In the last 20 years, advanced hybrid composites have turned out to be established as exceptionally efficient, elevated performance structural materials, and their consumption is increasing rapidly. This review chapter on recent advancements in advanced composites for aerospace applications presents a brief review of the present status of hybrid composite materials technology, in terms of characteristics and classification of aerospace composites, selection criteria, manufacturing process, and application of advanced composites in the aircraft and aerospace industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, I., Yazdani, B., & Zhu, Y. (2015). Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites. Nanomaterials, 5, 90–114.

    Article  Google Scholar 

  • Ahmed T, Ya HH, Azeem M, et al (2021) Working of Functional Components in Self-Healing Coatings for Anti-Corrosion Green Tribological Applications. Green Tribol 155–172. https://doi.org/10.1201/9781003139386-6

  • Ahmed, T., Ya, H. H., Mahadzir, S., et al. (2020). An overview: Mechanical and Wear properties of HDPE polymer nanocomposites reinforced with treated/non-treated inorganic nanofillers. Advanced Manufacturing Engineering, 231–241.

    Google Scholar 

  • Alam, A., Arif, S., & Ansari, A. H. (2017). Mechanical and morphological study of synthesized PMMA/CaCO3 Nano composites. In IOP conference series: Materials science and engineering (p. 12222). IOP Publishing.

    Google Scholar 

  • Alam, M. A., Arif, S., & Shariq, M. (2015). Enhancement in mechanical properties of polystyrene-ZnO nanocomposites. International Journal of Innovative Research in Advanced Engineering, 6, 122–129.

    Google Scholar 

  • Alam, M. A., Sapuan, S. M., Ya, H. H., et al. (2021a). Application of biocomposites in automotive components: A review. In Biocomposite and synthetic composites for automotive applications. https://doi.org/10.1016/B978-0-12-820559-4.00001-8

    Chapter  Google Scholar 

  • Alam, M. A., Ya, H. H., Ahmad, A., et al. (2021b). Influence of aluminum addition on the mechanical properties of brass/Al composites fabricated by stir casting. Materials Today: Proceedings.

    Google Scholar 

  • Alam, M. A., Ya, H. H., Azeem, M., et al. (2020a). Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study. Journal of Materials Research and Technology, 9, 14036–14050. https://doi.org/10.1016/j.jmrt.2020.09.087

    Article  CAS  Google Scholar 

  • Alam, M. A., Ya, H. H., Hussain, P. B., et al. (2020b). Experimental investigations on the surface hardness of synthesized polystyrene/zno nanocomposites. In Advances in manufacturing engineering (pp. 345–352). Springer.

    Chapter  Google Scholar 

  • Alderliesten, R. C., & Benedictus, R. (2008). Fiber/metal composite technology for future primary aircraft structures. Journal of Aircraft, 45, 1182–1189. https://doi.org/10.2514/1.33946

    Article  Google Scholar 

  • Al-Oqla, F. M., & Salit, M. S. (2017). Materials selection for natural fiber composites. Woodhead Publishing.

    Book  Google Scholar 

  • Amanov, A., Cho, I. S., Kim, D. E., & Pyun, Y. S. (2012). Fretting wear and friction reduction of CP titanium and Ti-6Al-4V alloy by ultrasonic nanocrystalline surface modification. Surface and Coatings Technology, 207, 135–142. https://doi.org/10.1016/j.surfcoat.2012.06.046

    Article  CAS  Google Scholar 

  • Arif, S., Alam, T., Ansari, A. H., et al. (2017). Study of mechanical and tribological behaviour of Al/SiC/ZrO2 hybrid composites fabricated through powder metallurgy technique. Materials Research Express, 4(7), 076511.

    Article  Google Scholar 

  • Baig, Z., Mamat, O., Mustapha, M., et al. (2018). An efficient approach to address issues of graphene nanoplatelets (GNPs) incorporation in aluminium powders and their compaction behaviour. Metals (Basel), 8, 1–16. https://doi.org/10.3390/met8020090

    Article  CAS  Google Scholar 

  • Begum, S., Fawzia, S., & Hashmi, M. S. J. (2020). Polymer matrix composite with natural and synthetic fibres. Advances in Materials and Processesing Technologies, 6, 547–564. https://doi.org/10.1080/2374068X.2020.1728645

    Article  Google Scholar 

  • Boyer, R., & Padmapriya, N. (2016). Aircraft materials. Reference Module in Materials Science and Materials, 1–9. https://doi.org/10.1016/b978-0-12-803581-8.01934-2

  • Chauhan, D. S., Quraishi, M. A., Ansari, K. R., & Saleh, T. A. (2020). Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Progress in Organic Coatings, 147, 105741.

    Article  CAS  Google Scholar 

  • Diamanti, K., Hodgkinson, J. M., & Soutis, C. (2004). Detection of low-velocity impact damage in composite plates using lamb waves. Structural Health Monitoring, 3, 33–41.

    Article  Google Scholar 

  • Diamanti, K., Soutis, C., & Hodgkinson, J. M. (2007). Piezoelectric transducer arrangement for the inspection of large composite structures. Composites. Part A, Applied Science and Manufacturing, 38, 1121–1130.

    Article  Google Scholar 

  • Diaz Valdes, S. H., & Soutis, C. (2000). Health monitoring of composites using lamb waves generated by piezoelectric devices. Plast Rubber Compos, 29, 475–481.

    Article  Google Scholar 

  • Du, D., Liu, D., Ye, Z., et al. (2014). Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy. Applied Surface Science, 313, 462–469. https://doi.org/10.1016/j.apsusc.2014.06.006

    Article  CAS  Google Scholar 

  • Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials and Design, 56, 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  • Fan, S., Yang, C., He, L., et al. (2016). Progress of ceramic matrix composites brake materials for aircraft application. Reviews on Advanced Materials Science, 44, 313–325.

    Google Scholar 

  • Ghori, S. W., Siakeng, R., Rasheed, M., et al. (2018). The role of advanced polymer materials in aerospace. In Sustainable composites for aerospace applications (pp. 19–34). Elsevier.

    Chapter  Google Scholar 

  • Guo, K. W. (2010). A review of magnesium/magnesium alloys corrosion and its protection. Recent Patents on Corrosion Science.

    Google Scholar 

  • Haider, K., Alam, M. A., Redhewal, A., & Saxena, V. (2015). Investigation of mechanical properties of Aluminium based metal matrix composites reinforced with sic & Al2O3. International Journal of Engineering Research and Applications, 5, 63–69.

    Google Scholar 

  • Ilevbare, G. O. (2000). Inhibition of pitting corrosion on aluminum alloy 2024-T3: Effect of soluble chromate additions vs chromate conversion coating. Corrosion, 56, 227–242. https://doi.org/10.5006/1.3287648

    Article  CAS  Google Scholar 

  • Jayakrishna, K., Kar, V. R., Sultan, M. T. H., & Rajesh, M. (2018). Materials selection for aerospace components. In Sustainable composites for aerospace applications (pp. 1–18). Elsevier.

    Google Scholar 

  • Kazmierski, C. (2011). Growth opportunities in global composites industry 2011–2016 (pp. 2012–2017). Lucintel, Inc..

    Google Scholar 

  • Kesavan, D., Gopiraman, M., & Sulochana, N. (2012). Green inhibitors for corrosion of metals: A review. Chemical Science Review and Letters, 1, 1–8.

    CAS  Google Scholar 

  • Khan, R., Ya, H. H., Pao, W., et al. (2020a). Effect of sand fines concentration on the erosion-corrosion mechanism of carbon steel 90° elbow pipe in slug flow. Materials (Basel), 13. https://doi.org/10.3390/ma13204601

  • Khan R, Ya HH, Pao W, et al (2020b) Investigation of maximum erosion zone in the horizontal 90 elbow. In Advances in manufacturing engineering. Springer, pp. 223–230.

    Google Scholar 

  • Khandelwal, S., & Rhee, K. Y. (2020). Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites. Part B, Engineering, 192, 108011. https://doi.org/10.1016/j.compositesb.2020.108011

    Article  CAS  Google Scholar 

  • Kozhukharov, S., Kozhukharov, V., Schem, M., et al. (2012). Protective ability of hybrid nano-composite coatings with cerium sulphate as inhibitor against corrosion of AA2024 aluminium alloy. Progress in Organic Coatings, 73, 95–103. https://doi.org/10.1016/j.porgcoat.2011.09.005

    Article  CAS  Google Scholar 

  • Liu, J., Yan, H., & Jiang, K. (2013). Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceramics International, 39, 6215–6221.

    Article  CAS  Google Scholar 

  • Majzoobi, G. H., Hojjati, R., & Soori, M. (2011). Fretting fatigue behavior of Al7075-T6 at sub-zero temperature. Tribology International, 44(11), 1443–1451.

    Article  CAS  Google Scholar 

  • Mallick, P. K. (2007). Fiber-reinforced composites: materials, manufacturing, and design. CRC press.

    Google Scholar 

  • Marsh, G. (2010). Airbus A350 XWB update. Reinforced Plastics, 54, 20–24.

    Article  Google Scholar 

  • Marsh, G. (2014). Composites and metals–a marriage of convenience? Reinforced Plastics, 58, 38–42.

    Article  Google Scholar 

  • Masood, F., Nallagownden, P., Elamvazuthi, I., et al. (2021). A new approach for design optimization and parametric analysis of symmetric compound parabolic concentrator for photovoltaic applications. Sustainability, 13, 4606.

    Article  CAS  Google Scholar 

  • Mouritz, A. P. (2012). Introduction to aerospace materials. Elsevier.

    Book  Google Scholar 

  • Njuguna, J. B. T.-L. C. S. (Ed.). (2016). Woodhead publishing series in composites science and engineering (pp. xiii–xvi). Woodhead Publishing.

    Google Scholar 

  • Peng, G., Chen, K., Chen, S., & Fang, H. (2011). Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-mg-cu alloy. Materials Science and Engineering A, 528, 4014–4018. https://doi.org/10.1016/j.msea.2011.01.088

    Article  CAS  Google Scholar 

  • Pimenta, S., Pinho, S. T. (2011). Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag 31, 378–392. https://doi.org/10.1016/j.wasman.2010.09.019.

  • Presuel-Moreno, F., Jakab, M. A., Tailleart, N., et al. (2008). Corrosion-resistant metallic coatings. Materials Today, 11, 14–23.

    Article  CAS  Google Scholar 

  • Puttegowda, M., Rangappa, S. M., Jawaid, M., et al. (2018). Potential of natural/synthetic hybrid composites for aerospace applications. Elsevier Ltd.

    Book  Google Scholar 

  • Raja, V. S., & Shoji, T. (2011). Stress corrosion cracking: Theory and practice. Elsevier.

    Book  Google Scholar 

  • Rana, S., & Fangueiro, R. (2016). Advanced composites in aerospace engineering. In Advanced composite materials for aerospace engineering (pp. 1–15). Elsevier.

    Google Scholar 

  • Saba, N., Tahir, P. M., & Jawaid, M. (2014). A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel), 6, 2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  • Saha, P. K. (2016). Aerospace manufacturing processes. CRC Press.

    Book  Google Scholar 

  • Sahu, M. K., & Sahu, R. K. (2020). Experimental investigation, modeling, and optimization of Wear parameters of B4C and Fly-ash reinforced aluminum hybrid composite. Frontiers of Physics, 8, 1–14. https://doi.org/10.3389/fphy.2020.00219

    Article  Google Scholar 

  • Sarhan, A. A. D., Zalnezhad, E., & Hamdi, M. (2013). The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy. Materials Science and Engineering A, 560, 377–387. https://doi.org/10.1016/j.msea.2012.09.082

    Article  CAS  Google Scholar 

  • Scotto D’Antuono, D., Gaies, J., Golumbfskie, W., & Taheri, M. L. (2014). Grain boundary misorientation dependence of β phase precipitation in an Al-mg alloy. Scripta Materialia, 76, 81–84. https://doi.org/10.1016/j.scriptamat.2014.01.003

    Article  CAS  Google Scholar 

  • Seshappa, A., & Anjaneya Prasad, B. (2020). Characterization and investigation of mechanical properties of aluminium hybrid nano-composites: Novel approach of utilizing silicon carbide and waste particles to reduce cost of material. Silicon. https://doi.org/10.1007/s12633-020-00748-z

  • Shaw, B. A., & Kelly, R. G. (2006). What is corrosion? Electrochemical Society Interface, 15, 24–27.

    Article  CAS  Google Scholar 

  • Shozib, I. A., Ahmad, A., Rahaman, M. S. A., et al. (2021). Modelling and optimization of microhardness of electroless Ni–P–TiO2 composite coating based on machine learning approaches and RSM. Journal of Materials Research and Technology, 12, 1010–1025.

    Article  CAS  Google Scholar 

  • Shu, J., Bi, H., Li, X., & Xu, Z. (2012). The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels. Corrosion Science, 57, 89–98. https://doi.org/10.1016/j.corsci.2011.12.030

    Article  CAS  Google Scholar 

  • Sommers, A., Wang, Q., Han, X., et al. (2010). Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—A review. Applied Thermal Engineering, 30, 1277–1291.

    Article  CAS  Google Scholar 

  • Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Science, 41, 143–151.

    Article  Google Scholar 

  • Soutis, C. (2019). Aerospace engineering requirements in building with composites. In: Polymer composites in the aerospace industry. Elsevierr, pp. 3–22.

    Google Scholar 

  • Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28, 319–334. Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India.

    Article  CAS  Google Scholar 

  • Tucker, N., & Lindsey, K. (2002). Introduction to automotive composites.

    Google Scholar 

  • Uematsu, Y., Kakiuchi, T., & Nakajima, M. (2012). Stress corrosion cracking behavior of the wrought magnesium alloy AZ31 under controlled cathodic potentials. Materials Science and Engineering A, 531, 171–177. https://doi.org/10.1016/j.msea.2011.10.052

    Article  CAS  Google Scholar 

  • Vasudevan, A. K., & Doherty, R. D. (2012). Aluminum alloys--contemporary research and applications: Contemporary research and applications. Elsevier.

    Google Scholar 

  • Verma, N., & Vettivel, S. C. (2018). Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. Journal of Alloys and Compounds, 741, 981–998. https://doi.org/10.1016/j.jallcom.2018.01.185

    Article  CAS  Google Scholar 

  • Vogelesang, L. B., & Vlot, A. (2000). Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology, 103, 1–5.

    Article  Google Scholar 

  • Walker, L. S., Marotto, V. R., Rafiee, M. A., et al. (2011). Toughening in graphene ceramic composites. ACS Nano, 5, 3182–3190.

    Article  CAS  Google Scholar 

  • Wanhill, R. J. H. (2013). Aerospace applications of aluminum-lithium alloys. Elsevier.

    Google Scholar 

  • Wang, R-M., Zheng, S-R., Zheng, Y. G. (2011). Polymer matrix composites and technology. Elsevier.

    Google Scholar 

  • Warner, T. (2006). Recently-developed aluminium solutions for aerospace applications. Materials Science Forum, 519–521, 1271–1278. https://doi.org/10.4028/www.scientific.net/msf.519-521.1271

    Article  Google Scholar 

  • Warren, A. S. (2004). Developments and challenges for aluminum—A boeing perspective. In: Materials forum (pp. 24–31).

    Google Scholar 

  • Williams, J. C., & Starke, E. A. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51, 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  • Winzer, N., Atrens, A., Song, G., et al. (2005). A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Advanced Engineering Materials, 7, 659–693.

    Article  CAS  Google Scholar 

  • Yusuf, M., Farooqi, A. S., Al-Kahtani, A. A., et al. (2021a). Syngas production from greenhouse gases using Ni–W bimetallic catalyst via dry methane reforming: Effect of W addition. International Journal of Hydrogen Energy.

    Google Scholar 

  • Yusuf, M., Farooqi, A. S., Alam, M. A., et al. (2021b). Response surface optimization of syngas production from greenhouse gases via DRM over high performance Ni–W catalyst. International Journal of Hydrogen Energy.

    Google Scholar 

  • Zalnezhad, E., Sarhan, A. A. D., & Hamdi, M. (2013). Investigating the fretting fatigue life of thin film titanium nitride coated aerospace Al7075-T6 alloy. Materials Science and Engineering A, 559, 436–446. https://doi.org/10.1016/j.msea.2012.08.123

    Article  CAS  Google Scholar 

  • Zhang, X., Chen, Y., & Hu, J. (2018). Progress in aerospace sciences recent advances in the development of aerospace materials. Progress in Aerospace Science, 97, 22–34. https://doi.org/10.1016/j.paerosci.2018.01.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors admiringly acknowledge the support of the Mechanical Engineering Department, Universiti Teknologi Petronas, Malaysia, for all the necessary facilities and granting a Ph.D. scholarship under the GA scheme. Authors also would like to thank the Advanced Engineering Materials and Composites Research Center, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, for informative support during the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azad Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, M.A. et al. (2022). Recent Advancements in Advanced Composites for Aerospace Applications: A Review. In: Mazlan, N., Sapuan, S., Ilyas, R. (eds) Advanced Composites in Aerospace Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-88192-4_16

Download citation

Publish with us

Policies and ethics