Skip to main content

Hybrid Biocomposites: Utilization in Aerospace Engineering

  • Chapter
  • First Online:
Advanced Composites in Aerospace Engineering Applications

Abstract

Biocomposites have been developed by the researchers in recent years owing to rising pressure on the protection of the environment. Poor interface, moderate to lower mechanical properties, and moisture intake are some drawbacks of biocomposites for partial or full change with synthetic composites. To overcome these drawbacks, hybridizing, blending two or more reinforcements instead of single reinforcement in a polymeric matrix, is widely employed nowadays. Considerable increase has been observed in the utilization of biocomposites or hybrid biocomposites in the aerospace industry such as gas turbine engines (fan blade and cases) over the past decade for weight reduction. Therefore, in this chapter, the works about hybrid biocomposites and their applications in the aerospace industry (aircraft frames, engine construction, and interior cabin components) are reported. Also, this chapter aims to analyze the synergistic effect of hybrid biocomposites in the aerospace applications with a discussion of recent research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M. W., Dey, B., Sammar, A. A., et al. (2020). In situ synthesis of graphene oxide in multi-walled carbon nanotube hybrid-reinforced polyetherimide nanocomposites with improved electrical, mechanical and thermal properties. Advanced Composite Materials, 29, 529–546. https://doi.org/10.1080/09243046.2019.1710680

    Article  CAS  Google Scholar 

  • Aisyah, H. A., Paridah, M. T., Sapuan, S. M., et al. (2021). A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13, 471. https://doi.org/10.3390/polym13030471

    Article  CAS  Google Scholar 

  • Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., et al. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13, 423. https://doi.org/10.3390/polym13030423

    Article  CAS  Google Scholar 

  • Anandjiwala, R. D., John, M. J., Wambua, P., et al (2008). Bio-based structural composite materials for aerospace applications. In 2nd SAIAS symposium, Stellenbosch, South Africa.

    Google Scholar 

  • Arockiam, N. J., Jawaid, M., & Saba, N. (2018). Chapter 6: Sustainable bio composites for aircraft components. In M. Jawaid & M. Thariq (Eds.), (pp. 109–123). Elsevier Science & Technology Books.

    Google Scholar 

  • Baker, A. A., Dutton, S., & Kelly, D. (2000). Chapter 12: Aircraft applications and design issues. Composite materials for aircraft structures. American Institute of Aeronautics and Astronautics, 435–475.

    Google Scholar 

  • Benyamina, B., Mokaddem, A., Doumi, B., et al. (2021). Study and modeling of thermomechanical properties of jute and alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polymer Bulletin, 78, 1771–1795. https://doi.org/10.1007/s00289-020-03183-7

    Article  CAS  Google Scholar 

  • Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23, 123–133. https://doi.org/10.1515/secm-2014-0088

    Article  Google Scholar 

  • Boegler, O., Kling, U., Empl, D., et al. (2014). Potential of sustainable materials in wing structural design. Deutscher Luft- und Raumfahrtkongress, 1–6.

    Google Scholar 

  • Chai, M. W., Bickerton, S., Bhattacharyya, D., et al. (2012). Influence of natural fibre reinforcements on the flammability of bio-derived composite materials. Composites: Part B, 43, 2867–2874. https://doi.org/10.1016/j.compositesb.2012.04.051

    Article  CAS  Google Scholar 

  • Chandrasekar, M., Ishak, M. R., Jawaid, M., et al. (2018). Chapter 14: Low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications. In M. Jawaid & M. Thariq (Eds.), Sustainable composites for aerospace applications (pp. 293–313). Elsevier Science & Technology Books.

    Google Scholar 

  • Das, O., Kim, N. K., Sarmah, A. K., et al. (2017). Development of waste based biochar/wool hybrid biocomposites: Flammability characteristics and mechanical properties. Journal of Cleaner Production, 144, 79–89. https://doi.org/10.1016/j.jclepro.2016.12.155

    Article  CAS  Google Scholar 

  • Eloy FS, Costa RRC, Medeiros R, et al. (2015) Comparison between mechanical properties of bio and synthetic composites for use in aircraft interior structures. Meeting on aeronautical composite materials and structures, São Paulo, Brazil.

    Google Scholar 

  • Farag, M. M. (2017). Chapter 5: Design and manufacture of biodegradable products from renewable resources. In V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of composites from renewable materials (Vol. 2, pp. 111–131). Wiley.

    Chapter  Google Scholar 

  • Fu, S.-Y., Xu, G., & Mai, Y.-W. (2002). On the elastic modulus of hybrid particle/short-fiber/polymer composites. Composites: Part B, 33, 291–299. https://doi.org/10.1016/S1359-8368(02)00013-6

    Article  Google Scholar 

  • Ghori, S. W., Siakeng, R., Rasheed, M., et al. (2018). Chapter 2: The role of advanced polymer materials in aerospace. In M. Jawaid & M. Thariq (Eds.), Sustainable composites for aerospace applications (pp. 19–34). Elsevier Science & Technology Books.

    Chapter  Google Scholar 

  • Gopi, S., Balakrishnan, P., Sreekala, M. S., et al. (2017). Chapter 11: Green materials for aerospace industries. In D. Ray (Ed.), Biocomposites for high-performance applications: Current barriers and future needs towards industrial development (pp. 307–318). Woodhead Publishing.

    Chapter  Google Scholar 

  • Goriparthi, B. K., Suman, K. N. S., & Nalluri, M. R. (2012). Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polymer Composites, 33, 237–244. https://doi.org/10.1002/pc.22145

    Article  CAS  Google Scholar 

  • Haris, M. Y., Laila, D., Zainudin, E. S., et al. (2011). Preliminary review of biocomposites materials for aircraft radome application. Key Engineering Materials, 471–472, 563–567. https://doi.org/10.4028/www.scientific.net/KEM.471-472.563

    Article  CAS  Google Scholar 

  • Hassan, A., Salema, A. A., Ani, F. N., et al. (2010). A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polymer Composites, 31, 2079–2101. https://doi.org/10.1002/pc.21006

    Article  CAS  Google Scholar 

  • Ilyas, R. A., Sapuan, S. M., Harussani, M. M., et al. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13, 1326. https://doi.org/10.3390/polym13081326

    Article  CAS  Google Scholar 

  • Islam, M. S., Ramli, I. B., Hasan, M. R., et al. (2017). Effect of kenaf and EFB fiber hybridization on physical and thermo-mechanical properties of PLA biocomposites. Fibers and Polymers, 18, 116–121. https://doi.org/10.1007/s12221-017-6208-x

    Article  CAS  Google Scholar 

  • Jacob, M., Thomas, S., & Varughese, K. T. (2007). Biodegradability and aging studies of hybrid biofiber reinforced natural rubber biocomposites. Journal of Biobased Materials and Bioenergy, 1, 118–126. https://doi.org/10.1166/jbmb.2007.013

    Article  Google Scholar 

  • Jamir, M. R. M., Majid, M. S. A., & Khasri, A. (2018). Chapter 8: Natural lightweight hybrid composites for aircraft structural applications. In M. Jawaid & M. Thariq (Eds.), Sustainable composites for aerospace applications (pp. 155–170). Elsevier Science & Technology Books.

    Google Scholar 

  • Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86, 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

    Article  CAS  Google Scholar 

  • Kaiser, M. R., Anuar, H., & Razak, S. B. A. (2014). Improvement in thermomechanical properties of injection molded nano-modified hybrid biocomposite. Journal of Thermoplastic Composite Materials, 27, 992–1009. https://doi.org/10.1177/0892705712461518

    Article  CAS  Google Scholar 

  • Karunakaran, S., Majid, D. L., & Tawil, M. L. M. (2016). Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conf Series: Materials Science and Engineering, 152, 012068. https://doi.org/10.1088/1757-899X/152/1/012068

    Article  Google Scholar 

  • KC, B., Tjong, J., Jaffer, S. A., & Sain, M. (2018). Thermal and dimensional stability of injection-molded sisal-glass fiber hybrid PP biocomposites. Journal of Polymers and the Environment, 26, 1279–1289. https://doi.org/10.1007/s10924-017-1033-2

    Article  CAS  Google Scholar 

  • Manfredi, L. B., Rodríguez, E. S., Wladyka-Przybylak, M., et al. (2006). Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability, 91, 255–261. https://doi.org/10.1016/j.polymdegradstab.2005.05.003

    Article  CAS  Google Scholar 

  • Mansor, M. R., Nurfaizey, A. H., Tamaldin, N., et al. (2019). Chapter 11: Natural fiber polymer composites: Utilization in aerospace engineering. In D. Verma, E. Fortunati, S. Jain, & X. Zhang (Eds.), Biomass, biopolymer-based materials, and bioenergy: Construction, biomedical, and other industrial applications (pp. 203–224). Elsevier Science & Technology Books.

    Chapter  Google Scholar 

  • Mouritz, A. P. (2012a). Chapter 17: Wood in small aircraft construction. In Introduction to aerospace materials (pp. 411–427). Elsevier Science & Technology Books.

    Google Scholar 

  • Mouritz, A. P. (2012b). Chapter 13: Polymers for aerospace structures. In Introduction to aerospace materials (pp. 268–302). Elsevier Science & Technology Books.

    Google Scholar 

  • Mouritz, A. P. (2012c). Chapter 14: Manufacturing of fibre-polymer composite materials. In Introduction to aerospace materials (pp. 303–337). Elsevier Science & Technology Books.

    Google Scholar 

  • Mouritz, A. P. (2012d). Chapter 15: Aerospace applications of fibre-polymer composites. In Introduction to aerospace materials (pp. 338–393). Elsevier Science & Technology Books.

    Google Scholar 

  • Nair, A. B., Sivasubramanian, P., Balakrishnan, P., et al. (2014). Chapter 15: Environmental effects, biodegradation, and life cycle analysis of fully biodegradable “green” composites. In S. Thomas, K. Joseph, S. K. Malhotra, et al. (Eds.), Polymer composite (pp. 515–568). Wiley.

    Google Scholar 

  • Njuguna, J., Pielichowski, K., & Fan, J. (2012). Chapter 15: Polymer nanocomposites for aerospace applications. In G. Fengge (Ed.), Advances in polymer nanocomposites: Types and applications (pp. 472–539). Elsevier Science & Technology Books.

    Chapter  Google Scholar 

  • Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., et al. (2021a). Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers, 13, 1047. https://doi.org/10.3390/polym13071047

    Article  CAS  Google Scholar 

  • Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., et al. (2021b). A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers, 13, 646. https://doi.org/10.3390/polym13040646

    Article  CAS  Google Scholar 

  • Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., et al. (2021). Micro- and nanocellulose in polymer composite materials: A review. Polymers, 13, 231. https://doi.org/10.3390/polym13020231

    Article  CAS  Google Scholar 

  • Panthapulakkal, S., & Sain, M. (2007). Studies on the water absorption properties of short hemp–glass fiber hybrid polypropylene composites. Journal of Composite Materials, 41, 1871–1883. https://doi.org/10.1177/0021998307069900

    Article  CAS  Google Scholar 

  • Rana, S., & Fangueiro, R. (2016). Chapter 1: Advanced composites in aerospace engineering. In S. Rana & R. Fangueiro (Eds.), Advanced composite materials for aerospace engineering: Processing, properties and applications (pp. 1–15). Elsevier Science & Technology Books.

    Google Scholar 

  • Rao, D. N., Mukesh, G., Ramesh, A., et al. (2020). Investigations on the mechanical properties of hybrid goat hair and banana fiber reinforced polymer composites. Materials Todays: Proceedings, 27, 1703–1707. https://doi.org/10.1016/j.matpr.2020.03.586

    Article  CAS  Google Scholar 

  • Rashid, M., Chetehouna, K., Cablé, A., et al. (2021). Analysing flammability characteristics of green biocomposites: An overview. Fire Technology, 57, 31–67. https://doi.org/10.1007/s10694-020-01001-0

    Article  Google Scholar 

  • Rout, D., Nayak, R. K., & Praharaj, S. (2021). Chapter 13: Aerospace and vehicle industry. In C. M. Hussain (Ed.), Handbook of polymer nanocomposites for industrial applications (pp. 399–417). Elsevier.

    Chapter  Google Scholar 

  • Senthilkumar, K., Siva, I., Rajini, N., et al. (2017). Chapter 3: Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application. In M. Jawaid & M. Thariq (Eds.), Sustainable composites for aerospace applications (pp. 35–54). Woodhead Publishing.

    Google Scholar 

  • Shahzad, A., & Choudhry, R. S. (2017). Chapter 16: Design and manufacturing of natural fiber/synthetic fiber reinforced polymer hybrid composites. In V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of composites from renewable materials (pp. 411–448). John Wiley & Sons.

    Chapter  Google Scholar 

  • Shanmugam, D., & Thiruchitrambalam, M. (2013). Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra palm leaf stalk fiber/jute fiber reinforced hybrid polyester composites. Materials and Design, 50, 533–542. https://doi.org/10.1016/j.matdes.2013.03.048

    Article  CAS  Google Scholar 

  • Sim, I. N., Han, S. O., Jang, Y. H., et al. (2013). Ceramic sheet hybrid Kenaf reinforced polypropylene biocomposites. Journal of Applied Polymer Science, 130, 1917–1922. https://doi.org/10.1002/app.39367

    Article  CAS  Google Scholar 

  • Siva, I., Jappes, J. T. W., & Suresha, B. (2012). Investigation on mechanical and tribological behavior of naturally woven coconut sheath-reinforced polymer composites. Polymer Composites, 33, 723–732. https://doi.org/10.1002/pc.22197

    Article  CAS  Google Scholar 

  • Suriani, M. J., Rapi, H. Z., Ilyas, R. A., et al. (2021a). Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: A review. Polymers, 13, 1323. https://doi.org/10.3390/polym13081323

    Article  CAS  Google Scholar 

  • Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., et al. (2021b). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/PET yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13, 1282. https://doi.org/10.3390/polym13081282

    Article  CAS  Google Scholar 

  • Yokozeki, T., Aoki, Y., & Ogasawara, T. (2008). Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Composite Structures, 82, 382–389. https://doi.org/10.1016/j.compstruct.2007.01.015

    Article  Google Scholar 

Download references

Acknowledgments

There are not enough words to describe how grateful I am to my doctor interventional neurologist Assoc. Prof. Hasan Huseyin Karadeli for giving me a second life after my brain disease. I am sure that without his operation, I would be unable to do all the things I am able to do now. I am lucky to have him as my doctor. I want to thank him so much for saving my life in August 2019. I also dedicate this chapter to my family and Assoc. Prof. Hasan Huseyin Karadeli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kuram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuram, E. (2022). Hybrid Biocomposites: Utilization in Aerospace Engineering. In: Mazlan, N., Sapuan, S., Ilyas, R. (eds) Advanced Composites in Aerospace Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-88192-4_14

Download citation

Publish with us

Policies and ethics