Skip to main content

Material Characterization of Alloy for Aerospace Application: Effect of Laser Power on the Co-axially Deposited T64 Alloy and Cu

  • Chapter
  • First Online:
Advanced Composites in Aerospace Engineering Applications

Abstract

In this research work, 10 wt. % Cu was deposited with 90 wt. % T64 alloy via the laser system. The deposition was performed on an ytterbium laser system with a maximum operating power of 3 kW. The effect of laser power on the laser-deposited T64 + 10 wt. % Cu was investigated. Microstructural analysis and microhardness profiling of the deposited samples were examined. Basket-weave-like Widmanstätten structures were observed in the heat-affected zone of the deposit, and these occur as a result of the cooling rate; however, it increases as the laser power was increased. The average microhardness values were obtained and sample 1 deposited at the laser power of 1000 Watts had the lowest hardness value of HV 309 ± 7, while the highest hardness value of HV 573 ± 7 was obtained for sample 4 deposited at the laser power of 1600 watts. Response surface methodology (RSM) was also implemented using the Design-Expert 11 software to determine the optimum and desirable parameters. The properties of the T64 alloy were improved with the addition of 10 wt.% Cu, and this can be recommended for the engine block of an aerospace application to serve as fire resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ATSM E3-11. (2011). Standard guide for preparation of metallographic specimens. ATSM International, Accessed 2013 from the database.

    Google Scholar 

  • ATSM E384-11el. (2011). Standard test method for Knoop and Vickers hardness of materials. ATSM International Book of Standards, Vol. 03, 01.

    Google Scholar 

  • Cherenda, N. N., Basalai, A. V., Uglov, V. V., Laskovnev, A. P., Astashynski, V. M., & Kuzmitski, A. M. (2019). Phase composition and mechanical properties of Cu–Ti alloys synthesized in the surface layer of copper by plasma impact on the Ti/Cu system. Vacuum, 167, 452–458.

    Article  CAS  Google Scholar 

  • Clarizia, L., Vitiello, G., Pallotti, D. K., Silvestri, B., Nadagouda, M., Lettieri, S., Luciani, G., Andreozzi, R., Maddalena, P., & Marotta, R. (2017). Effect of surface properties of copper-modified commercial titanium dioxide photocatalysts on hydrogen production through photoreforming of alcohols. International Journal of Hydrogen Energy., 42(47), 28349–28362.

    Article  CAS  Google Scholar 

  • Copper Development Association. (2012). Retrieved 2013, from http://www.copperalliance.org.uk/copper-and-its-alloys/alloys/coppers.

  • The Balance. (n.d.). Titanium properties and characteristics. Retrieved January 5, from, 2020 http://www.thebalance.com/metal-profile-titanium-2340158.

  • Moiseyev, V. N. (2006). Titanium alloys: Russian aircraft and aerospace applications (pp. 169–180). CRC Press Taylor & Froes Group.

    Google Scholar 

  • Miyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., & Ford, R. G. (Eds.) (1999). Functionally graded material design, processing and applications. Materials Technology Series 1999, Springer.

    Google Scholar 

  • Joshi, V. A. (2006). Titanium alloys. An atlas of structures and fracture features (pp. 1–247). CRC Press Taylor & Francis Group.

    Book  Google Scholar 

  • Yadav, S., Paul, C. P., Jinoop, A. N., Rai, A. K., & Bindra, K. S. (2020). Laser directed energy deposition based additive manufacturing of copper: Process development and material characterizations. Journal of Manufacturing Processes, 58, 984–997. https://doi.org/10.1016/j.jmapro.2020.09.008

    Article  Google Scholar 

  • Lee, Y. F., Lee, S. L., Huang, C. H., & Lee, C. K. (2001). Effects of Fe additive on properties of Si reinforced copper matrix composites fabricated by vacuum infiltration. Powder Metallurgy., 44(4), 339–343. https://doi.org/10.1179/pom.2001.44.4.339

    Article  CAS  Google Scholar 

  • Dong, S. R., Tu, J. P., & Zhang, X. B. (2001). An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Materials Science and Engineering. A, 313, 83–87.

    Article  Google Scholar 

  • Tian, N., Dong, L. L., Wang, H. L., Fu, Y. Q., Huo, W. T., Liu, Y., Yu, J. S., & Zhang, Y. S. (2021). Microstructure and tribological properties of titanium matrix nanocomposites through powder metallurgy using graphene oxide nanosheets enhanced copper powders and spark plasma sintering. Journal of Alloys and Compounds., 867, 159093.

    Article  CAS  Google Scholar 

  • Han, K., Wang, T., Tang, Q., Zhang, B., & Feng, J. (2019). Effect of Cu66V34 filler thickness on the microstructure and properties of titanium/copper joint by electron beam welding. Journal of Materials Processing Technology, 267, 103–113.

    Article  CAS  Google Scholar 

  • Eze, A. A., Jamiru, T., Sadiku, E. R., Durowoju, M. Ọ., Kupolati, W. K., Ibrahim, I. D., Obadele, B. A., Olubambi, P. A., & Diouf, S. (2018). Effect of titanium addition on the microstructure, electrical conductivity and mechanical properties of copper by using SPS for the preparation of Cu-Ti alloys. Journal of Alloys and Compounds, 736, 163–171.

    Article  CAS  Google Scholar 

  • Loch, D. A. L., & Ehiasarian, A. P. (2017). Study of the effect of RF-power and process pressure on the morphology of copper and titanium sputtered by ICIS. Surface and Coatings Technology, 327, 200–206.

    Article  CAS  Google Scholar 

  • Sanz-Guerrero, J., & Ramos-Grez, J. (2008). Effect of total applied energy density on the densification of copper–titanium slabs produced by a DMLF process. Journal of Materials Processing Technology, 202(1-3), 339–346.

    Article  CAS  Google Scholar 

  • Lloyd, J. C., Neubauer, E., Barcena, J., & Clegg, W. J. (2010). Effect of titanium on copper–titanium/carbon nanofibre composite materials. Composites Science and Technology, 70(16), 2284–2289.

    Article  CAS  Google Scholar 

  • Liu, J., Li, F., Liu, C., Wang, H., Ren, B., Yang, K., & Zhang, E. (2014). Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Materials Science and Engineering: C, 35, 392–400.

    Article  Google Scholar 

  • Horzum, S., Gürakar, S., & Serin, T. (2019). Investigation of the structural and optical properties of copper-titanium oxide thin films produced by changing the amount of copper. Thin Solid Films, 685, 293–298.

    Article  CAS  Google Scholar 

  • Shang, C., Guojian, X., Wang, C., Yang, G., & You, J. (2019). Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer. Materials Letters, 252, 342–344.

    Article  CAS  Google Scholar 

  • Mantri, S. A., Alam, T., Zheng, Y., Williams, J. C., & Banerjee, R. (2020). Influence of post deposition annealing on microstructure and properties of laser additively manufactured titanium copper alloys. Additive Manufacturing., 32, 101067.

    Article  CAS  Google Scholar 

  • Onuike, B., Heer, B., & Bandyopadhyay, A. (2018). Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENS™). Additive Manufacturing, 21, 133–140.

    Article  CAS  Google Scholar 

  • Tey, C. F., Tan, X., Sing, S. L., & Yeong, W. Y. (2020). Additive manufacturing of multiple materials by selective laser melting: Ti-alloy to stainless steel via a Cu-alloy interlayer. Additive Manufacturing, 31, 100970.

    Article  CAS  Google Scholar 

  • Ding, W., Liu, N., Fan, J., Cao, J., & Wang, X. (2021). Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer. Intermetallics, 129, 107027.

    Article  CAS  Google Scholar 

  • Struers Application Note on Titanium. (2013). http://www.struers.com/resources/elements/12/104827/Application_Note_Titanium_English.pdf. (Accessed from the website).

  • Erinosho, M. F., Akinlabi, E. T., & Pityana, S. (2014). Laser metal deposition of T64 + 10wt.% Cu composite: A study on the effect of laser power on the evolving properties. World Congress of Engineering (WCE), London, 2, 1203–1208.

    Google Scholar 

  • Suprobo, G., Park, N., & Baek, E. R. (2019). Effect of double stage solution treatment on the volume fraction of massive phase (αm) as a new method to obtain a fine lamellar α/β in Ti–6Al–4V alloy. Intermetallics, 113, 106581.

    Article  CAS  Google Scholar 

  • Zhao, Y., Mingyuan, L., Fan, Z., Huang, S., & Huang, H. (2020). Laser deposition of wear-resistant titanium oxynitride/titanium composite coatings on Ti-6Al-4V alloy. Applied Surface Science, 531, 147212.

    Article  CAS  Google Scholar 

  • Gil, F. J., Ginebra, M. P., Manero, J. M., & Planell, J. A. (2001). Formation of α-Widmanstätten structure: Effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy. Journal of Alloys and Compounds, 329(1–2), 142–152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Erinosho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erinosho, M.F., Akinlabi, E.T., Oladosu, K.O. (2022). Material Characterization of Alloy for Aerospace Application: Effect of Laser Power on the Co-axially Deposited T64 Alloy and Cu. In: Mazlan, N., Sapuan, S., Ilyas, R. (eds) Advanced Composites in Aerospace Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-88192-4_11

Download citation

Publish with us

Policies and ethics