Skip to main content

Focal and Generalized Seizures Distinction by Rebalancing Class Data and Random Forest Classification

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12940)

Abstract

Epileptic seizures are caused by abnormal electrical activity of brain cells, frequently accompanied by a short-lived loss of control or awareness. Epileptic seizures differ depending on their origin in the brain. They can be categorized as either focal or generalized in onset. The identification of seizure category is essential in brain surgery and in selecting medications that could help bring seizures under control. It is not always feasible to find out exactly if the seizure was generalized or focal without a thorough analysis of the continuous prolonged electroencephalographic (EEG) waveforms. In this study, we propose an automatic classification method based on Hjorth parameters measured in EEG. 1497 EEG signals from the Temple University Hospital Seizure Corpus (v.1.5.1) are used. Hjorth parameters (activity, complexity, and mobility) are extracted from these EEG records. To address class imbalance, data was rebalanced by Synthetic Minority Over Sampling (SMOTE). We also investigated the impact of changing the window length on the random forest classifier. For comparison, cost-sensitive learning has been applied by providing more weight to the minority class (generalized seizure) directly in the classifier. The performance of the proposed method was compared using accuracy, recall, and precision measures. Our method achieved a highest accuracy rate of 92.3% with a recall of 92.7% and precision of 91.8% using Hjorth parameters extracted from 10 s windows and rebalanced using SMOTE. A slight variation in performance measures occurred according to window size.

Keywords

  • Generalized and focal seizures
  • EEG
  • Hjorth parameters
  • SMOTE
  • Weighted random forest classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stafstrom, C.E., Carmant, L.: Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Biol. 7, 1–19 (2015). https://doi.org/10.1101/cshperspect.a022426

    CrossRef  Google Scholar 

  2. Shoeb, A.H.: Application of machine learning to epileptic seizure onset detection and treatment MASS NSl of technology. Massachusetts Institute of Technology (2009)

    Google Scholar 

  3. Song, Y., Crowcroft, J., Zhang, J.: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 210, 132–146 (2012). https://doi.org/10.1016/j.jneumeth.2012.07.003

    CrossRef  Google Scholar 

  4. Sharma, M., Dhere, A., Pachori, R.B., Acharya, U.R.: An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks. Knowl.-Based Syst. 118, 217–227 (2017). https://doi.org/10.1016/j.knosys.2016.11.024

    CrossRef  Google Scholar 

  5. Bhattacharyya, A., Sharma, M., Pachori, R.B., Sircar, P., Acharya, U.R.: A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput. Appl. 29(8), 47–57 (2016). https://doi.org/10.1007/s00521-016-2646-4

    CrossRef  Google Scholar 

  6. Zeng, W., Li, M., Yuan, C., Wang, Q., Liu, F., Wang, Y.: Classification of focal and non focal EEG signals using empirical mode decomposition (EMD), phase space reconstruction (PSR) and neural networks. Artif. Intell. Rev. 52(1), 625–647 (2019). https://doi.org/10.1007/s10462-019-09698-4

    CrossRef  Google Scholar 

  7. Saputro, I.R.D., Maryati, N.D., Solihati, S.R., Wijayanto, I., Hadiyoso, S., Patmasari, R.: Seizure type classification on EEG signal using support vector machine. In: Journal of Physics: Conference Series, p. 12065. IOP Publishing (2019). https://doi.org/10.1088/1742-6596/1201/1/012065

  8. Roy, S., Asif, U., Tang, J., Harrer, S.: Seizure type classification using EEG signals and machine learning: setting a benchmark. In: 2020 IEEE Signal Processing in Medicine and Biology Symposium, SPMB (2020). https://doi.org/10.1109/SPMB50085.2020.9353642

  9. Das, A.B., Bhuiyan, M.I.H.: Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain. Biomed. Signal Process. Control 29, 11–21 (2016). https://doi.org/10.1016/j.bspc.2016.05.004

    CrossRef  Google Scholar 

  10. Obeid, I., Picone, J.: The Temple University Hospital EEG data corpus. Front. Neurosci. 10, 196 (2016). https://doi.org/10.3389/fnins.2016.00196

    CrossRef  Google Scholar 

  11. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 306–310 (1970). https://doi.org/10.1016/0013-4694(70)90143-4

    CrossRef  Google Scholar 

  12. Oh, S.-H., Lee, Y.-R., Kim, H.-N.: A novel EEG feature extraction method using Hjorth parameter. Int. J. Electron. Electr. Eng. 2(2), 106–110 (2014). https://doi.org/10.12720/ijeee.2.2.106-110

  13. Jemal, I., Mitiche, A., Mezghani, N.: A study of EEG feature complexity in epileptic seizure prediction. Appl. Sci. 11, 1579 (2021). https://doi.org/10.3390/app11041579

    CrossRef  Google Scholar 

  14. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108, 10–19 (2012). https://doi.org/10.1016/j.cmpb.2011.11.005

    CrossRef  Google Scholar 

  15. Lehmann, C., et al.: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 161, 342–350 (2007). https://doi.org/10.1016/j.jneumeth.2006.10.023

    CrossRef  Google Scholar 

  16. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    CrossRef  MATH  Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    CrossRef  MATH  Google Scholar 

  18. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data. Department of Statistics (2004)

    Google Scholar 

  19. Shah, V., et al.: The Temple University Hospital seizure detection corpus. Front. Neuroinform. 12, 83 (2018). https://doi.org/10.3389/fninf.2018.00083

    CrossRef  Google Scholar 

  20. Donos, C., Dümpelmann, M., Schulze-Bonhage, A.: Early Seizure Detection Algorithm Based on Intracranial EEG and Random Forest Classification. Int. J. Neural Syst. 25, 1550023 (2015). https://doi.org/10.1142/S0129065715500239

    CrossRef  Google Scholar 

Download references

Acknowledgment

Special thanks to Youssef Ouakrim for his technical contribution in coding stage. This research was supported by funding from Fonds de recherche du Quebec- Nature et technologies (L.A.A) and the Canada Research Chair on Biomedical Data Mining (950–231214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Abou-Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abou-Abbas, L., Jemal, I., Henni, K., Mitiche, A., Mezghani, N. (2021). Focal and Generalized Seizures Distinction by Rebalancing Class Data and Random Forest Classification. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)