Abdel-Basset, M., Chang, V., Mohamed, R.: HSMA\(\_\)WOA: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 95, 106642 (2020)
CrossRef
Google Scholar
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011). https://doi.org/10.1109/TPAMI.2010.226
CrossRef
Google Scholar
Beasley, J.W., et al.: Information chaos in primary care: implications for physician performance and patient safety. J. Am. Board Fam. Med. 24(6), 745–751 (2011). http://www.jabfm.org/content/24/6/745.short
CrossRef
Google Scholar
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50
CrossRef
Google Scholar
Berner, E.S. (ed.): Clinical Decision Support Systems: Theory and Practice, 3rd edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31913-1
CrossRef
Google Scholar
Bibault, J.E., Giraud, P., Burgun, A.: Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett. 382(1), 110–117 (2016). https://doi.org/10.1016/j.canlet.2016.05.033
CrossRef
Google Scholar
Bidgood, W.D., Horii, S.C., Prior, F.W., Van Syckle, D.E.: Understanding and using DICOM, the data interchange standard for biomedical imaging. J. Am. Med. Inform. Assoc. 4(3), 199–212 (1997). https://doi.org/10.1136/jamia.1997.0040199
CrossRef
Google Scholar
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051
CrossRef
Google Scholar
Bozinovski, S.: Reminder of the first paper on transfer learning in neural networks, 1976. Informatica 44(3) (2020). https://doi.org/10.31449/INF.V44I3.2828
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
CrossRef
Google Scholar
de Bruijne, M.: Machine learning approaches in medical image analysis: from detection to diagnosis. Med. Image Anal. 33, 94–97 (2016). https://doi.org/10.1016/j.media.2016.06.032
CrossRef
Google Scholar
Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Advances in Neural Information Processing Systems 9, pp. 375–381 (1997). https://papers.nips.cc/paper/1253-improving-the-accuracy-and-speed-of-support-vector-machines
Chen, S.-T., Cornelius, C., Martin, J., Chau, D.H.P.: ShapeShifter: robust physical adversarial attack on faster R-CNN object detector. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 52–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_4
CrossRef
Google Scholar
Chen, T., Carlos, G.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Google Scholar
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Gated feedback recurrent neural networks. In: 32nd International Conference on Machine Learning, ICML 2015, vol. 3 (2015)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1 (2019)
Google Scholar
Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007). https://doi.org/10.1016/j.compmedimag.2007.02.002
CrossRef
Google Scholar
Gers, F.: Learning to forget: continual prediction with LSTM. In: 9th International Conference on Artificial Neural Networks: ICANN 1999, vol. 1999, pp. 850–855. IEEE (1999). https://doi.org/10.1049/cp:19991218
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)
Google Scholar
Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6638947
Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Engl. J. Med. 363(1), 1–3 (2010). https://doi.org/10.1056/NEJMp1002530
CrossRef
Google Scholar
Hinton, G.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Hinton, G.: Deep learning-a technology with the potential to transform health care. JAMA 320(11), 1101 (2018). https://doi.org/10.1001/jama.2018.11100
CrossRef
Google Scholar
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
CrossRef
Google Scholar
Hržić, F., Štajduhar, I., Tschauner, S., Sorantin, E., Lerga, J.: Local-entropy based approach for X-ray image segmentation and fracture detection. Entropy 21(4), 338 (2019). https://doi.org/10.3390/E21040338
MathSciNet
CrossRef
Google Scholar
Hržić, F., Tschauner, S., Sorantin, E., Štajduhar, I.: XAOM: a method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis. Comput. Biol. Med. 132, 104300 (2021). https://doi.org/10.1016/j.compbiomed.2021.104300
CrossRef
Google Scholar
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cays visual cortex. J. Physiol. 160(1), 106–154 (1962)
CrossRef
Google Scholar
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 (2015)
Google Scholar
Jain, V., Seung, H.S., Turaga, S.C.: Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20(5), 653–666 (2010). https://doi.org/10.1016/j.conb.2010.07.004
CrossRef
Google Scholar
Kalinin, A.A., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387
CrossRef
Google Scholar
Kansagra, A.P., et al.: Big data and the future of radiology informatics. Acad. Radiol. 23(1), 30–42 (2016)
CrossRef
Google Scholar
Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J.: Interpreting interpretability: understanding data scientists’ use of interpretability tools for machine learning. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2020)
Google Scholar
Khan, M.A., Sharif, M., Akram, T., Damaševičius, R., Maskeliūnas, R.: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 11(5), 811 (2021)
CrossRef
Google Scholar
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)
Google Scholar
Kiros, R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems 28 (NIPS 2015), pp. 3294–3302 (2015)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Google Scholar
Krsnik, I., Glavaš, G., Krsnik, M., Miletic, D., Štajduhar, I.: Automatic annotation of narrative radiology reports. Diagnostics 10(4), 196 (2020). https://doi.org/10.3390/diagnostics10040196
CrossRef
Google Scholar
Lal, S., et al.: Adversarial attack and defence through adversarial training and feature fusion for diabetic retinopathy recognition. Sensors 21(11), 3922 (2021)
CrossRef
Google Scholar
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
CrossRef
Google Scholar
Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)
CrossRef
Google Scholar
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/J.MEDIA.2017.07.005
CrossRef
Google Scholar
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008). https://doi.org/10.1109/ICDM.2008.17. http://ieeexplore.ieee.org/document/4781136/
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008). https://doi.org/10.1007/s10479-011-0841-3
Manojlović, T., Ilić, D., Miletić, D., Štajduhar, I.: Using DICOM tags for clustering medical radiology images into visually similar groups. In: ICPRAM 2020 - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (2020). https://doi.org/10.5220/0008973405100517
Manojlović, T., Milanič, M., Štajduhar, I.: Deep embedded clustering algorithm for clustering PACS repositories. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). IEEE (2021). https://doi.org/10.1109/CBMS52027.2021.00091
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 3111–3119 (2013)
Google Scholar
Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008). https://doi.org/10.1007/s11263-007-0122-4
CrossRef
Google Scholar
Obermeyer, Z., Emanuel, E.J.: Predicting the future - big data, machine learning, and clinical medicine. New Engl. J. Med. 375(13), 1216–1219 (2016). https://doi.org/10.1056/NEJMp1606181
CrossRef
Google Scholar
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
CrossRef
Google Scholar
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Stroudsburg (2014). https://doi.org/10.3115/v1/D14-1162
Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158–164 (2018). https://doi.org/10.1038/s41551-018-0195-0
CrossRef
Google Scholar
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016)
Google Scholar
Rajkomar, A., et al.: Scalable and accurate deep learning for electronic health records. NPJ Digital Med. 1(Jan), 1–10 (2018). https://doi.org/10.1038/s41746-018-0029-1
Ramasamy, L.K., Padinjappurathu, S.G., Kadry, S., Damaševičius, R.: Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ Comput. Sci. 7 (2021)
Google Scholar
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519. IEEE Computer Society (2014)
Google Scholar
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7
CrossRef
MATH
Google Scholar
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
MathSciNet
CrossRef
Google Scholar
Sahlol, A.T., Abd Elaziz, M., Tariq Jamal, A., Damaševičius, R., Farouk Hassan, O.: A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 12(7), 1146 (2020)
CrossRef
Google Scholar
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013). https://doi.org/10.1007/s11263-013-0636-x
MathSciNet
CrossRef
MATH
Google Scholar
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Google Scholar
Štajduhar, I., Mamula, M., Miletić, D., Ünal, G.: Semi-automated detection of anterior cruciate ligament injury from MRI. Comput. Methods Programs Biomed. 140, 151–164 (2017). https://doi.org/10.1016/j.cmpb.2016.12.006
CrossRef
Google Scholar
Štajduhar, I., Tomić, M., Lerga, J.: Mirroring quasi-symmetric organ observations for reducing problem complexity. Expert Syst. Appl. 85, 318–334 (2017). https://doi.org/10.1016/j.eswa.2017.05.041
CrossRef
Google Scholar
Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic segmentation of the knee joint using active appearance models. In: Medical Image Analysis for the Clinic: A Grand Challenge, pp. 224–230. CreateSpace (2010)
Google Scholar
Wagholikar, K.B., Sundararajan, V., Deshpande, A.W.: Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36(5), 3029–3049 (2012)
CrossRef
Google Scholar
Wang, S., Summers, R.M.: Machine learning and radiology. Med. Image Anal. 16(5), 933–951 (2012). https://doi.org/10.1016/j.media.2012.02.005
CrossRef
Google Scholar
Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: 33rd International Conference on Machine Learning, ICML 2016, vol. 1 (2016)
Google Scholar
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 2048–2057 (2015). https://doi.org/10.1016/j.scitotenv.2016.07.196
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
Google Scholar