Abstract
In clinical analysis, medical radiology is a widely used technique to make a noninvasive medical diagnosis that establishes the presence of an injury or disease without requiring invasive surgery. The purpose of computer-aided diagnosis (CAD) is to assist the clinician in interpreting the acquired data. In recent years, the application of machine learning techniques in this field has greatly increased, leading to increased accuracy or even complete replacement of manually created models. The main reason for the increased use of these techniques in medical image analysis is due to the fact that medical data has become increasingly available, the computational power of computers has increased, and significant advances have been made in machine learning, especially in machine vision applications. This development is a driving force behind major changes in the field of medicine, both in the laboratory and in the clinic. Unlike filtering techniques, machine learning can open up new methods for diagnosing diseases that were previously unthinkable. Moreover, the implementation of personalised medicine in the clinic, i.e. modelling specific conditions closely related to patient characteristics, requires the use of machine learning. In this paper, we give an overview of the field and present a set of guidelines that can be helpful in analysing large collections of medical images using data-driven techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://www.dicomstandard.org/ (last accessed July 26, 2021).
References
Abdel-Basset, M., Chang, V., Mohamed, R.: HSMA\(\_\)WOA: a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. 95, 106642 (2020)
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011). https://doi.org/10.1109/TPAMI.2010.226
Beasley, J.W., et al.: Information chaos in primary care: implications for physician performance and patient safety. J. Am. Board Fam. Med. 24(6), 745–751 (2011). http://www.jabfm.org/content/24/6/745.short
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50
Berner, E.S. (ed.): Clinical Decision Support Systems: Theory and Practice, 3rd edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31913-1
Bibault, J.E., Giraud, P., Burgun, A.: Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett. 382(1), 110–117 (2016). https://doi.org/10.1016/j.canlet.2016.05.033
Bidgood, W.D., Horii, S.C., Prior, F.W., Van Syckle, D.E.: Understanding and using DICOM, the data interchange standard for biomedical imaging. J. Am. Med. Inform. Assoc. 4(3), 199–212 (1997). https://doi.org/10.1136/jamia.1997.0040199
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051
Bozinovski, S.: Reminder of the first paper on transfer learning in neural networks, 1976. Informatica 44(3) (2020). https://doi.org/10.31449/INF.V44I3.2828
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
de Bruijne, M.: Machine learning approaches in medical image analysis: from detection to diagnosis. Med. Image Anal. 33, 94–97 (2016). https://doi.org/10.1016/j.media.2016.06.032
Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Advances in Neural Information Processing Systems 9, pp. 375–381 (1997). https://papers.nips.cc/paper/1253-improving-the-accuracy-and-speed-of-support-vector-machines
Chen, S.-T., Cornelius, C., Martin, J., Chau, D.H.P.: ShapeShifter: robust physical adversarial attack on faster R-CNN object detector. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 52–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_4
Chen, T., Carlos, G.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Gated feedback recurrent neural networks. In: 32nd International Conference on Machine Learning, ICML 2015, vol. 3 (2015)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1 (2019)
Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007). https://doi.org/10.1016/j.compmedimag.2007.02.002
Gers, F.: Learning to forget: continual prediction with LSTM. In: 9th International Conference on Artificial Neural Networks: ICANN 1999, vol. 1999, pp. 850–855. IEEE (1999). https://doi.org/10.1049/cp:19991218
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)
Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6638947
Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Engl. J. Med. 363(1), 1–3 (2010). https://doi.org/10.1056/NEJMp1002530
Hinton, G.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)
Hinton, G.: Deep learning-a technology with the potential to transform health care. JAMA 320(11), 1101 (2018). https://doi.org/10.1001/jama.2018.11100
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Hržić, F., Štajduhar, I., Tschauner, S., Sorantin, E., Lerga, J.: Local-entropy based approach for X-ray image segmentation and fracture detection. Entropy 21(4), 338 (2019). https://doi.org/10.3390/E21040338
Hržić, F., Tschauner, S., Sorantin, E., Štajduhar, I.: XAOM: a method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis. Comput. Biol. Med. 132, 104300 (2021). https://doi.org/10.1016/j.compbiomed.2021.104300
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cays visual cortex. J. Physiol. 160(1), 106–154 (1962)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 (2015)
Jain, V., Seung, H.S., Turaga, S.C.: Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20(5), 653–666 (2010). https://doi.org/10.1016/j.conb.2010.07.004
Kalinin, A.A., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387
Kansagra, A.P., et al.: Big data and the future of radiology informatics. Acad. Radiol. 23(1), 30–42 (2016)
Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J.: Interpreting interpretability: understanding data scientists’ use of interpretability tools for machine learning. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2020)
Khan, M.A., Sharif, M., Akram, T., Damaševičius, R., Maskeliūnas, R.: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics 11(5), 811 (2021)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)
Kiros, R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems 28 (NIPS 2015), pp. 3294–3302 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Krsnik, I., Glavaš, G., Krsnik, M., Miletic, D., Štajduhar, I.: Automatic annotation of narrative radiology reports. Diagnostics 10(4), 196 (2020). https://doi.org/10.3390/diagnostics10040196
Lal, S., et al.: Adversarial attack and defence through adversarial training and feature fusion for diabetic retinopathy recognition. Sensors 21(11), 3922 (2021)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/J.MEDIA.2017.07.005
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008). https://doi.org/10.1109/ICDM.2008.17. http://ieeexplore.ieee.org/document/4781136/
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008). https://doi.org/10.1007/s10479-011-0841-3
Manojlović, T., Ilić, D., Miletić, D., Štajduhar, I.: Using DICOM tags for clustering medical radiology images into visually similar groups. In: ICPRAM 2020 - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (2020). https://doi.org/10.5220/0008973405100517
Manojlović, T., Milanič, M., Štajduhar, I.: Deep embedded clustering algorithm for clustering PACS repositories. In: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). IEEE (2021). https://doi.org/10.1109/CBMS52027.2021.00091
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 3111–3119 (2013)
Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008). https://doi.org/10.1007/s11263-007-0122-4
Obermeyer, Z., Emanuel, E.J.: Predicting the future - big data, machine learning, and clinical medicine. New Engl. J. Med. 375(13), 1216–1219 (2016). https://doi.org/10.1056/NEJMp1606181
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Stroudsburg (2014). https://doi.org/10.3115/v1/D14-1162
Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158–164 (2018). https://doi.org/10.1038/s41551-018-0195-0
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016)
Rajkomar, A., et al.: Scalable and accurate deep learning for electronic health records. NPJ Digital Med. 1(Jan), 1–10 (2018). https://doi.org/10.1038/s41746-018-0029-1
Ramasamy, L.K., Padinjappurathu, S.G., Kadry, S., Damaševičius, R.: Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ Comput. Sci. 7 (2021)
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519. IEEE Computer Society (2014)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sahlol, A.T., Abd Elaziz, M., Tariq Jamal, A., Damaševičius, R., Farouk Hassan, O.: A novel method for detection of tuberculosis in chest radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 12(7), 1146 (2020)
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013). https://doi.org/10.1007/s11263-013-0636-x
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Štajduhar, I., Mamula, M., Miletić, D., Ünal, G.: Semi-automated detection of anterior cruciate ligament injury from MRI. Comput. Methods Programs Biomed. 140, 151–164 (2017). https://doi.org/10.1016/j.cmpb.2016.12.006
Štajduhar, I., Tomić, M., Lerga, J.: Mirroring quasi-symmetric organ observations for reducing problem complexity. Expert Syst. Appl. 85, 318–334 (2017). https://doi.org/10.1016/j.eswa.2017.05.041
Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic segmentation of the knee joint using active appearance models. In: Medical Image Analysis for the Clinic: A Grand Challenge, pp. 224–230. CreateSpace (2010)
Wagholikar, K.B., Sundararajan, V., Deshpande, A.W.: Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36(5), 3029–3049 (2012)
Wang, S., Summers, R.M.: Machine learning and radiology. Med. Image Anal. 16(5), 933–951 (2012). https://doi.org/10.1016/j.media.2012.02.005
Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: 33rd International Conference on Machine Learning, ICML 2016, vol. 1 (2016)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 2048–2057 (2015). https://doi.org/10.1016/j.scitotenv.2016.07.196
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
Acknowledgement
This work has been supported in part by Croatian Science Foundation [grant number IP-2020-02-3770]; and by the University of Rijeka, Croatia [grant number uniri-tehnic-18-15].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Štajduhar, I. et al. (2021). Analysing Large Repositories of Medical Images. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-88163-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88162-7
Online ISBN: 978-3-030-88163-4
eBook Packages: Computer ScienceComputer Science (R0)