Skip to main content

A Beginner’s Short Guide to Membrane Biophysics

  • Chapter
  • First Online:
Modeling Biomaterials

Part of the book series: Nečas Center Series ((NECES))

  • 1041 Accesses

Abstract

This chapter provides a basic guide to the essentials of membrane biophysics. The review consists of three parts: The first part focuses on physicochemical aspects of biomembranes. The origin of the hydrophobic attraction that drives the self-assembly of lipids into large structures like membranes is explained, and an overview of the thermodynamic properties of bilayer membranes is given. The second part introduces the Helfrich model for the curvature elasticity of two-dimensional manifolds. This is the most commonly used framework for studying the mechanical properties of lipid membranes. The third part of the chapter is dedicated to molecular simulations of membranes. The principles of molecular dynamics simulations are explained, and the different modeling strategies for membranes, ranging from atomistic to highly coarse-grained lattice-based models, are reviewed. These different classes of models address membrane properties and processes across a wide spectrum of lengths and time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Water also has three vibrational degrees of freedom, but they are irrelevant at room temperature and become excited only at temperatures of several thousand degrees.

  2. 2.

    In contrast to A p, the physical area A is not a thermodynamic variable that can be easily fixed. In some theoretical studies [27], the term “surface tension” is used to describe a Lagrange multiplier that fixes the average physical area.

  3. 3.

    Equations 79 cannot obviously (and do not intend to) summarize the entire field of classical statistical mechanics. They are only meant to demonstrate the basic idea that the free energy of a thermodynamic system can be derived from the statistics of an ensemble of microscopic (molecular) states of that system. This concept will be used in Sect. 3.4 where the statistical–mechanical behavior of thermally fluctuating membranes will be discussed.

  4. 4.

    Carrying the integration over the projected rather than the surface area generates an error of order | h|2 in the calculated Helfrich energy. The approximation in Eq. 16 involves a correction of the same order.

  5. 5.

    The extrapolation of the simulated fluctuation data to the small q limit involves several technical issues that influence the determined values of the bending modulus. It is also worthwhile to mention the existence of alternative computational methods for determining κ. A comprehensive and updated review with many references on these topics can be found in [36]. A computational method to accelerate the slow relaxation of the small q (large wavelength) Fourier modes of fluctuating membranes has been proposed in [37].

  6. 6.

    The pore will not grow indefinitely. The parabolic shape of the free energy Eq. 41 assumes a linear dependence of G on the pore area, Eq. 40, but this form is only valid for holes that are much smaller than the membrane area (but not too small to be considered as a local defect). For larger holes, the quadratic form for the elastic stretch energy Eq. 4 must be taken into account, which limits the size of the pore. See, e.g., [25].

  7. 7.

    The existence of a shadow trajectory also follows from this property.

  8. 8.

    The Langevin dynamics of a single free particle (f = 0) is underdamped at time scales dt ≪ ma (a, b → 1) and overdamped for dt ≫ ma (a →−1, b → 0).

  9. 9.

    Any numerical integration scheme becomes unstable and fails to follow the continuous-time trajectory when the integration time step becomes \(dt_s\gtrsim \omega _0^{-1}\), where ω 0 is the largest vibrational frequency of the system (the resonance frequency of the strongest interaction term).

  10. 10.

    Many simulations are conducted in the isobaric–isothermal ensemble, which differ from the canonical ensemble in that the pressure rather than the volume of the system is fixed. Algorithms for fixing the pressure in MD simulations are called “barostats,” and they suffer from similar implementation problems to thermostat algorithms. A relatively robust G-JF barostat algorithm, which is based on concepts used for the derivation of the G-JF thermostat, has been presented in [62].

References

  1. Y. Lee, D. H. Thompson, Stimuli-responsive liposomes for drug delivery, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9, e1450 (2017).

    Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002).

    Google Scholar 

  3. S. J. Blundell, K. M. Blundell, Concepts in Thermal Physics, 2nd edn. (Oxford Press, Oxford, 2010).

    MATH  Google Scholar 

  4. J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1991).

    Google Scholar 

  5. K. A. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, 2nd. edn. (Garland Science, Boca Raton, 2010).

    Google Scholar 

  6. G. Caldieri, R. Buccione, Aiming for invadopodia: organizing polarized delivery at sites of invasion, Trends in Cell Biology 20, 64 (2010).

    Article  Google Scholar 

  7. R. M. Lynden-Bell, S. C. Morris, J. D. Barrow, J. L. Finney, C. Harper (eds), Water and Life: The Unique Properties of H 2 O, 1st edn. (CRC Press, Boca Raton, 2010).

    Google Scholar 

  8. A. Ben-Naim, Hydrophobic Interactions (Plenum Press, New York, 1980).

    Book  Google Scholar 

  9. G. Navascues, Liquid surfaces: theory of surface tension, Rep. Prog. Phys. 42, 113 (1979).

    Article  Google Scholar 

  10. T. A. Witten, Structured Fluids: Polymers, Colloids, Surfactants (Oxford University Press, Oxford, 2010).

    Google Scholar 

  11. M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena. 4th edn. (John Wiley & Sons, Hoboken, 2012).

    Google Scholar 

  12. S. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Frontiers in Physics) (CRC Press, Boca Raton, 2003).

    MATH  Google Scholar 

  13. R. Brewster, P. A. Pincus, S. A. Safran, Hybrid lipids as a biological surface-active component, Biophys. J. 97, 1087 (2009).

    Article  Google Scholar 

  14. C. J. Fielding (ed), Lipid Rafts and Caveolae: From Membrane Biophysics to Cell Biology (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  15. F. G. van der Goot, T. Harder, Raft membrane domains: From a liquid-ordered membrane phase to a site of pathogen attack, Semin. Immunol. 13, 89 (2001).

    Article  Google Scholar 

  16. H.-J. Kaiser, D. Lingwood, I. Levental, J. L. Sampaio, L. Kalvodova, L. Rajendran, K. Simons, Order of lipid phases in model and plasma membranes, Proc. Natl. Acad. Sci. U.S.A 106, 16645 (2009).

    Article  Google Scholar 

  17. K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387, 569 (1997).

    Article  Google Scholar 

  18. L. Pike, Rafts defined: A report on the keystone symposium on lipid rafts and cell function, J. Lipid Research 47, 1597 (2006).

    Article  Google Scholar 

  19. A. R. Honerkamp-Smith, S. L. Veatch, S. L. Keller, An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes, Biochim. Biophys. Acta Biomembr. 1788, 53 (2009).

    Article  Google Scholar 

  20. S. Komura, D. Andelman, Physical aspects of heterogeneities in multi-component lipid membranes, Adv. Colloid Interface Sci. 208, 34 (2014).

    Article  Google Scholar 

  21. F. Schmid, Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes, Biochim. Biophys. Acta Biomembr. 1859, 509 (2017).

    Article  Google Scholar 

  22. L. D. Landau, E. M. Lifshitz, Theory of Elasticity (Volume 7 of Course in Theoretical Physics) 3rd edn. (Butterworth-Heinemann, Oxford, 2006).

    Google Scholar 

  23. D. Boal, Mechanics of the Cell, 2nd edn. (Cambridge University Press, Cambridge, 2012).

    Book  Google Scholar 

  24. E. Evans, W. Rawicz, Entropy-driven tension and bending elasticity in condensed-fluid membranes Phys. Rev. Lett. 64, 2094 (1990).

    Article  Google Scholar 

  25. O. Farago, P. Pincus, The effect of thermal fluctuations on Schulman area elasticity, Eur. Phys. J. E 11, 399 (2003).

    Article  Google Scholar 

  26. O. Farago, Mechanical surface tension governs membrane thermal fluctuations, Phys. Rev. E 84, 051914 (2011).

    Article  Google Scholar 

  27. P. Sens, S. A. Safran, Pore formation and area exchange in tense membranes, Europhys. Lett. 43, 95 (1998).

    Article  Google Scholar 

  28. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

    Google Scholar 

  29. J. F. Marko, E. D. Siggia, Statistical mechanics of supercoiled DNA. Phys. Rev. E. 52 2912 (1995).

    Article  MathSciNet  Google Scholar 

  30. W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. 28C, 693 (1973).

    Article  Google Scholar 

  31. F. Campelo, C. Arnarez, S. J. Marrink, M. M. Kozlov, Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers, Adv. Colloid Interface Sci. 208, 25 (2014).

    Article  Google Scholar 

  32. E. Sackmann, Thermo-elasticity and adhesion as regulators of cell membrane architecture and function, J. Phys.: Condens. Matter 18, R785 (2006).

    Google Scholar 

  33. A. J. Ridley, Life at the leading edge, Cell 145, 2012 (2011).

    Article  Google Scholar 

  34. C. Monzel, K. Sengupta, Measuring shape fluctuations in biological membranes, J. Phys. D: Appl. Phys. 49, 243002 (2016).

    Article  Google Scholar 

  35. F. Schmid, Fluctuations in lipid bilayers: Are they really understood?, Biophys. Rev. Lett. 8, 1 (2013).

    Article  Google Scholar 

  36. C. Allolio, A. Haluts, D. Harries, A local instantaneous surface method for extracting membrane elastic moduli from simulation: Comparison with other strategies, Chem. Phys. 514, 31 (2018).

    Article  Google Scholar 

  37. O. Farago, Mode excitation Monte Carlo simulations of mesoscopically large membranes]/, J. Chem Phys. 128, 184105 (2008).

    Article  Google Scholar 

  38. O. Farago, P. Pincus, Statistical mechanics of bilayer membrane with a fixed projected area, J. Chem. Phys. 120, 2934 (2004).

    Article  Google Scholar 

  39. J. D. Litster, Stability of lipid bilayers and red blood cell membranes, Phys. Lett. A 53, 193 (1975).

    Article  Google Scholar 

  40. O. Farago, C. D. Santangelo, Pore formation in fluctuating membranes, J. Chem. Phys. 122, 044901 (2005).

    Article  Google Scholar 

  41. R. O. Dror, R. M. Dirks, J. P. Grossman, H. Xu, D. E. Shaw, Biomolecular simulation: a computational microscope for molecular biology, Annu. Rev. Biophys. 41, 429 (2012).

    Article  Google Scholar 

  42. V. Brádzová, D. R. Bowler, Atomistic Computer Simulations - A Practical Guide (Wiley-VCH, Weinheim, 2012).

    Google Scholar 

  43. M. Deserno, K. Kremer, H. Paulsen, C. Peter, F. Schmid, Computational Studies of Biomembrane Systems: Theoretical Considerations, Simulation Models, and Applications. In: T. Basché, K. Müllen, M. Schmidt (eds), From Single Molecules to Nanoscopically Structured Materials, Advances in Polymer Science, vol 260. (Springer, Cham, 2014).

    Google Scholar 

  44. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, 2nd edn (Academic Press, San Diego, 2002).

    MATH  Google Scholar 

  45. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  Google Scholar 

  46. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81, 3684 (1984).

    Article  Google Scholar 

  47. R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).

    MATH  Google Scholar 

  48. N. Grønbech-Jensen, O. Farago, Defining velocities for accurate kinetic statistics in the Gronbech-Jensen Farago thermostat. Phys. Rev. E 101, 022123 (2020).

    Article  Google Scholar 

  49. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  50. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev.A 31, 1695 (1985).

    Article  Google Scholar 

  51. N. Grønbech-Jensen, O. Farago, A simple and effective Verlet-type algorithm for simulating Langevin dynamics,Mol. Phys. 111, 983 (2013).

    Article  Google Scholar 

  52. N. Grønbech-Jensen, N. R. Hayre, O. Farago, Application of the G-JF discrete-time thermostat for fast and accurate molecular simulations, Comput. Phys. Commun. 185, 524 (2014).

    Article  MATH  Google Scholar 

  53. P. Langevin, Sur la théorie du mouvement brownien (On the theory of Brownian motion), C. R. Acad. Sci. Paris 146, 530 (1908).

    MATH  Google Scholar 

  54. R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966).

    Article  MATH  Google Scholar 

  55. B. Leimkuhler, C.Matthews, Rational Construction of Stochastic Numerical Methods for Molecular Sampling, Appl. Math. Res. Express 2013, 34 (2013).

    MathSciNet  MATH  Google Scholar 

  56. Z. X. Guo (ed), Multiscale Materials Modeling (Woodhead Publishing, Cambridge UK, 2007).

    Google Scholar 

  57. S. C. L. Kamerlin, S. Vicatos, A. Dryga, A. Warshel1, Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems, Annu. Rev. Phys. Chem. 62, 41 (2011).

    Google Scholar 

  58. J. H. Ipsen, G. Karlström, O. G. Mourtisen, H. Wennerström, M. J. Zuckermann, Phase equilibria in the phosphatidylcholine-cholesterol system, Biochim. Biophys. Acta Biomembr. 905, 162 (1987).

    Article  Google Scholar 

  59. M. R. Vist and J. H. Davis, Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: Deuterium nuclear magnetic resonance and differential scanning calorimetry, Biochemistry 29, 451 (1990).

    Article  Google Scholar 

  60. A. P. Lyubartsev, A. L. Rabinovich, Force field development for lipid membrane simulations, Biochim. Biophys. Acta 1858, 2483 (2016).

    Article  Google Scholar 

  61. M. Javanainen, H. Martinez-Seara, I. Vattulainen, Nanoscale membrane domain formation driven by cholesterol, Sci. Rep. 7, 1143 (2017).

    Article  Google Scholar 

  62. N. Grønbech-Jensen, O. Farago, Constant pressure and temperature discrete-time Langevin molecular dynamics, J. Chem. Phys. 141, 194108 (2014).

    Article  Google Scholar 

  63. C. L. Armstrong, D. Marquardt, H. Dies, N. Kuc̆erka, Z. Yamani, T. A. Harroun, J. Katsaras, A.-C. Shi, M. C. Rheinstädter, The observation of highly ordered domains in membranes with cholesterol, PLoS ONE 8, e66162 (2013).

    Google Scholar 

  64. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries. The MARTINI force field: Coarse grained model for biomolecular simulations, J. Phys. Chem. B 111, 7812 (2007).

    Article  Google Scholar 

  65. C. Díaz-Tejada, I. Ariz-Extreme, N. Awasthi, J. S. Hub, Quantifying lateral inhomogeneity of cholesterol-containing membranes, J. Phys. Chem. Lett. 6, 4799 (2015).

    Article  Google Scholar 

  66. M. Javanainen, B. Fabian, H. Martinez-Seara, Comment on “Capturing phase behavior of ternary lipid mixtures with a refined Martini coarse-grained force field”, preprint arXiv:2009.07767 (2020).

    Google Scholar 

  67. H. Noguchi, M. Takasu, Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation, Phys Rev E 64, 041913 (2001).

    Article  Google Scholar 

  68. O. Farago, “Water-free” computer model for fluid bilayer membranes, J Chem Phys 119, 596 (2003).

    Article  Google Scholar 

  69. G. Brannigan, F. L. H. Brown, Solvent-free simulations of fluid membrane bilayers, J Chem Phys 120, 1059 (2004).

    Article  Google Scholar 

  70. I. R. Cooke, K. Kremer, M. Deserno, Tunable generic model for fluid bilayer membranes Phys Rev E 72 011506 (2005).

    Article  Google Scholar 

  71. O. Lenz, F. Schmid, A simple computer model for liquid lipid bilayers, J. Mol. Liq. 117, 147 (2005).

    Article  Google Scholar 

  72. S. Meinhardt, F. Schmid, Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes, Soft Matter 15, 1942 (2019).

    Article  Google Scholar 

  73. A. H. de Vries, S. Yefimov, A. E. Mark, S. J. Marrink, Molecular structure of the lecithin ripple phase, Proc. Nat. Acad. Sci. USA 102, 5392 (2005).

    Article  Google Scholar 

  74. C. N. Yang, T. D. Lee, Statistical theory of equations of state and phase transitions II. Lattice gas and Ising model, Phys. Rev. 87, 410 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  75. T. Sarkar, O. Farago, Minimal lattice model of lipid membranes with liquid-ordered domains, preprint arXiv:2103.13761 (2021).

    Google Scholar 

  76. N. Dharan, O. Farago, Formation of semi-dilute adhesion domains driven by weak elasticity-mediated interactions, Soft Matter 12, 6649 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Farago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farago, O. (2021). A Beginner’s Short Guide to Membrane Biophysics. In: Málek, J., Süli, E. (eds) Modeling Biomaterials. Nečas Center Series. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-88084-2_1

Download citation

Publish with us

Policies and ethics