Skip to main content

A Framework for Assessing Impacts of Information and Communication Technology on Passenger Transport and Greenhouse Gas Emissions

  • Conference paper
  • First Online:
Advances and New Trends in Environmental Informatics (ENVIROINFO 2021)

Part of the book series: Progress in IS ((PROIS))

Included in the following conference series:

Abstract

Information and communication technology (ICT) provides unprecedented opportunities to reduce greenhouse gas (GHG) emissions from passenger transport by avoiding, shifting or improving transport. Research on climate protection through ICT applications in passenger transport mainly focuses on theoretical potentials, is assuming that digital mobility services replace GHG-intensive transport modes (e.g. car travel), and does not specify the conditions under which decarbonization potentials will materialize. It is known that digital mobility services can also take a complementary (as opposed to substituting) role in travel or replace non-motorized travel, which can increase GHG emissions. Based on existing literature, we develop a conceptual framework to guide qualitative and quantitative assessments of the relationship between ICT use, passenger transport and GHG emissions. The framework distinguishes three types of effects: (1) First-order effects, GHG impacts of producing, operating and disposing the ICT hardware and software, (2) second-order effects, impacts of ICT on properties of transport modes, transport mode choice and travel demand, and (3) third-order effects, long-term structural changes due to ICT use (e.g. residential relocation). We qualitatively demonstrate the framework at the example of automated driving and discuss methodological challenges in assessments of ICT impacts on passenger transport such as the definition of system boundaries, consideration of socio-demographic characteristics of individuals and the inference of causality. The framework supports researchers in scoping assessments, designing suitable assessment methods and correctly interpreting the results, which is essential to put digitalization in passenger transport at the service of climate protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Depends on the GHG intensity of the electricity mix.

  2. 2.

    Depends whether car transport replaces other transport modes (or vice versa) or whether it leads to additional travel demand.

References

  1. Sims, R., Schaeffer, F., Creutzig, X., Cruz-Núñez, M.D., Dimitriu, D., Figueroa Meza, M.J., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J.J., Sperling, D., Tiwari, G.: Transport. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2014)

    Google Scholar 

  2. European Environment Agency: Greenhouse gas emissions from transport in Europe (2021). https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12, last accessed 2021/04/12

  3. United Nations: Mobilizing sustainable transport for development (2016)

    Google Scholar 

  4. Bieser, J., Hintemann, R., Beucker, S., Schramm, S., Hilty, L.: Klimaschutz durch digitale Technologien: Chancen und Risiken. Bitkom, Boderstep Institute for Innovation and Sustainability, University of Zurich, Berlin, Germany (2020). https://doi.org/10.5167/uzh-190091

  5. Hilty, L., Bieser, J.: Opportunities and Risks of Digitalization for Climate Protection in Switzerland. University of Zurich, Zurich (2017). https://doi.org/10.5167/uzh-141128

  6. GeSI: #SMARTer2030. ICT Solutions for 21st Century Challenges. Brussels, Belgium (2015)

    Google Scholar 

  7. WWF Sweden: The potential global CO2 reductions from ICT use Identifying and assessing the opportunities to reduce the first billion tonnes of CO2, (2008)

    Google Scholar 

  8. Malmodin, J., Bergmark, P.: Exploring the effect of ICT solutions on GHG emissions in 2030. In: Proceedings of EnviroInfo and ICT for Sustainability 2015. pp. 37–46. , Copenhagen, Denmark (2015)

    Google Scholar 

  9. Pawlak, J., Le Vine, S., Polak, J., Kopp, J.: ICT and physical mobility: State of knowledge and future outlook. Institute for Mobility research (ifmo), Imperial College London (2015)

    Google Scholar 

  10. Mokhtarian, P.: Telecommunications and Travel: The Case for Complementarity. J. Ind. Ecol. 6, 43–57 (2002). https://doi.org/10.1162/108819802763471771

    Article  Google Scholar 

  11. Moreau, H., de Jamblinne de Meux, L., Zeller, V., D’Ans, P., Ruwet, C., Achten, W.M.J.: Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters. Sustainability. 12, 1803 (2020) https://doi.org/10.3390/su12051803

  12. Mobitool: Umweltdaten & Emissionsfaktoren von mobitool: Treibhauspotenzial (Update 2020, v2.1). (2020)

    Google Scholar 

  13. Eurostat: Modal split of passenger transport, (2021). https://ec.europa.eu/eurostat/databrowser/view/tran_hv_psmod/default/table?lang=en, last accessed 2021/04/12

  14. Bates, J., Leibling, D.: Spaced out: perspectives on parking policy. RAC Foundation (2012)

    Google Scholar 

  15. Rodrigue, J.-P.: Transportation Modes, Modal Competition and Modal Shift. In: The Geography of Transport Systems. Routledge, New York (2020)

    Google Scholar 

  16. Mokhtarian, P.: A typology of relationships between telecommunications and transportation. Transportation Research Part A: General. 24, 231–242 (1990). https://doi.org/10.1016/0191-2607(90)90060-J

    Article  Google Scholar 

  17. Salomon, I.: Telecommunications and travel relationships: a review. Transportation Research Part A: General. 20, 223–238 (1986). https://doi.org/10.1016/0191-2607(86)90096-8

    Article  Google Scholar 

  18. Gerte, R., Konduri, K.C., Eluru, N.: Is There a Limit to Adoption of Dynamic Ridesharing Systems? Evidence from Analysis of Uber Demand Data from New York City. Transp. Res. Rec. 2672, 127–136 (2018). https://doi.org/10.1177/0361198118788462

    Article  Google Scholar 

  19. Tirachini, A.: Ride-hailing, travel behaviour and sustainable mobility: an international review. Transportation 47, 2011–2047 (2020). https://doi.org/10.1007/s11116-019-10070-2

    Article  Google Scholar 

  20. Erdmann, L., Hilty, L.: Scenario Analysis: Exploring the Macroeconomic Impacts of Information and Communication Technologies on Greenhouse Gas Emissions. J. Ind. Ecol. 14, 824–841 (2010)

    Article  Google Scholar 

  21. Bieser, J.C.T., Vaddadi, B., Kramers, A., Höjer, M., Hilty, L.M.: Impacts of telecommuting on time use and travel: A case study of a neighborhood telecommuting center in Stockholm. Travel Behaviour and Society. 23, 157–165 (2021). https://doi.org/10.1016/j.tbs.2020.12.001

    Article  Google Scholar 

  22. Vaddadi, B., Pohl, J., Bieser, J., Kramers, A.: Towards a conceptual framework of direct and indirect environmental effects of co-working. In: Proceedings of ICT4S 2020 – 7th International Conference on ICT for Sustainability. ACM, Virtual Conference. (2020). https://doi.org/10.1145/3401335.3401619

  23. Hilty, L., Aebischer, B.: ICT for Sustainability: An Emerging Research Field. In: Hilty, L. and Aebischer, B. (eds.) ICT Innovations for Sustainability. pp. 3–36. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-09228-7_1

  24. Berkhout, F., Hertin, J.: Impacts of Information and Communication Technologies on Environmental Sustainability: speculations and evidence. , Brighton, United Kingdom (2001)

    Google Scholar 

  25. Pohl, J., Hilty, L., Finkbeiner, M.: How LCA contributes to the environmental assessment of higher order effects of ICT application: A review of different approaches. Journal of Cleaner Production. 219, 698–712 (2019). https://doi.org/10.1016/j.jclepro.2019.02.018

    Article  Google Scholar 

  26. Bieser, J., Coroamă, V.: Direkte und indirekte Umwelteffekte der Informations- und Kommunikationstechnologie. Sustainability Management Forum, NachhaltigkeitsManagementForum. 29(1), 1–11 (2021). https://doi.org/10.1007/s00550-020-00502-4

  27. Itten, R., Hischier, R., Andrae, A.S.G., Bieser, J.C.T., Cabernard, L., Falke, A., Ferreboeuf, H., Hilty, L.M., Keller, R.L., Lees-Perasso, E., Preist, C., Stucki, M.: Digital transformation—life cycle assessment of digital services, multifunctional devices and cloud computing. Int. J. Life Cycle Assess. 25, 2093–2098 (2020).https://doi.org/10.1007/s11367-020-01801-0

  28. Börjesson Rivera, M., Håkansson, C., Svenfelt, Å., Finnveden, G.: Including second order effects in environmental assessments of ICT. Environmental Modelling & Software. 56, 105–115 (2014)https://doi.org/10.1016/j.envsoft.2014.02.005

  29. Coroamă, V., Mattern, F.: Digital Rebound - Why Digitalization Will not Redeem us our Environmental Sins. In: ICT4S2019. 6th International Conference on Information and Communication Technology for Sustainability. CEUR Workshop Proceedings, Lappeenranta, Finland (2019). http://ceur-ws.org/Vol-2382/

  30. Gossart, C.: Rebound Effects and ICT: A Review of the Literature. In: ICT Innovations for Sustainability. pp. 435–448. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09228-7_26

  31. Madlener, R., Alcott, B.: Herausforderungen für eine technisch-ökonomische Entkopplung von Naturverbrauch und Wirtschaftswachstum. Enquete-Kommission “Wachstum, Wohlstand, Lebensqualität” des Deutschen Bundestages (2011)

    Google Scholar 

  32. Bieser, J., Haas, D., Hilty, L.: VETUS - Visual Exploration of Time Use Data to Support Environmental Assessment of Lifestyles. In: ICT4S2019. 6th International Conference on Information and Communication Technology for Sustainability. CEUR Workshop Proceedings, Lappeenranta, Finland (2019). http://ceur-ws.org/Vol-2382/

  33. Bieser, J., Hilty, L.: Conceptualizing the Impact of Information and Communication Technology on Individual Time and Energy Use. Telematics and Informatics. 101375 (2020). https://doi.org/10.1016/j.tele.2020.101375

  34. Amatuni, L., Ottelin, J., Steubing, B., Mogollón, J.M.: Does car sharing reduce greenhouse gas emissions? Assessing the modal shift and lifetime shift rebound effects from a life cycle perspective. Journal of Cleaner Production. 266, 121869 (2020). https://doi.org/10.1016/j.jclepro.2020.121869

    Article  Google Scholar 

  35. Llorca, M., Jamasb, T.: Energy efficiency and rebound effect in European road freight transport. Transportation Research Part A: Policy and Practice. 101, 98–110 (2017)

    Google Scholar 

  36. Bieser, J., Hilty, L.: Indirect Effects of the Digital Transformation on Environmental Sustainability: Methodological Challenges in Assessing the Greenhouse Gas Abatement Potential of ICT. In: Penzenstadler, B., Easterbrook, S., Venters, C., and Ahmed, S.I. (eds.) ICT4S2018. 5th International Conference on Information and Communication Technology for Sustainability. pp. 68–81. EasyChair, Toronto, Canada (2018). https://doi.org/10.29007/lx7q

  37. Warland, L., Hilty, L.: Factsheet: Business Travel. University of Zurich (2016)

    Google Scholar 

  38. Muro-Rodríguez, A.I., Perez-Jiménez, I.R., Gutiérrez-Broncano, S.: Consumer Behavior in the Choice of Mode of Transport: A Case Study in the Toledo-Madrid Corridor. Front Psychol. 8, (2017). https://doi.org/10.3389/fpsyg.2017.01011

  39. Hörl, S., Becker, F., Dubernet, T., Axhausen, K.W.: Induzierter Verkehr durch autonome Fahrzeuge: Eine Abschätzung. Schweizerische Vereinigung der Verkehrsingenieure und Verkehrsexperten (SVI), Bundesamt für Strassen (2019)

    Google Scholar 

  40. Johansen, L.: Lectures on Macroeconomic Planning. North-Holland Publishing Company, Amsterdam (1978)

    Google Scholar 

  41. Höjer, M.: What is the Point of IT? : Backcasting urban transport and land-use futures, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3016, (2000)

  42. Our World in Data: COVID-19: Google Mobility Trends, https://ourworldindata.org/covid-google-mobility-trends, last accessed 2021/04/12

  43. SAE International: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. (2016)

    Google Scholar 

  44. Gawron, J.H., Keoleian, G.A., De Kleine, R.D., Wallington, T.J., Kim, H.C.: Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects. Environ. Sci. Technol. 52, 3249–3256 (2018). https://doi.org/10.1021/acs.est.7b04576

    Article  Google Scholar 

  45. Fulton, L., Mason, J., Meroux, D.: Three Revolutions in Urban Transportation. UC Davis, ITDP (2017)

    Google Scholar 

  46. Bieser, J., Salieri, B., Hischier, R., Hilty, L.: Next generation mobile networks: Problem or opportunity for climate protection? University of Zurich, Empa, Swisscom, Swisscleantech, Zurich, St. Gallen, Switzerland (2020). https://doi.org/10.5167/uzh-191299

  47. Anderson, J.M., Kalra, N., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola, T.A.: Autonomous Vehicle Technology: A Guide for Policymakers. Rand Corporation (2016)

    Google Scholar 

  48. Mokhtarian, P.: If telecommunication is such a good substitute for travel, why does congestion continue to get worse? Transportation Letters. 1, 1–17 (2009). https://doi.org/10.3328/TL.2009.01.01.1-17

    Article  Google Scholar 

  49. Taiebat, M., Brown, A.L., Safford, H.R., Qu, S., Xu, M.: A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles. Environ. Sci. Technol. 52, 11449–11465 (2018). https://doi.org/10.1021/acs.est.8b00127

    Article  Google Scholar 

  50. Harper, C.D., Hendrickson, C.T., Mangones, S., Samaras, C.: Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transportation Research Part C: Emerging Technologies. 72, 1–9 (2016). https://doi.org/10.1016/j.trc.2016.09.003

    Article  Google Scholar 

  51. Perret, F., Fischer, R., Bruns, F., Abegg, C., de Haan, P., Straumann, R., Hofer, M., Raymann, L.: Einsatz automatisierter Fahrzeuge im Alltag - Denkbare Anwendungen und Effekte in der Schweiz. EBP, BaslerFonds, Schweizerischer Städteverband, Zürich (2018)

    Google Scholar 

  52. Bieser, J.C.T.: A time-use approach to assess indirect environmental effects of information and communication technology: time rebound effects of telecommuting, https://www.zora.uzh.ch/id/eprint/191486/, (2020). https://doi.org/10.5167/uzh-191486

  53. Coroamă, V., Schien, D., Preist, C., Hilty, L.: The Energy Intensity of the Internet: Home and Access Networks. In: ICT Innovations for Sustainability. pp. 137–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09228-7_8

  54. Bergmark, P., Coroamă, V., Höjer, M., Donovan, C.: A Methodology for Assessing the Environmental Effects Induced by ICT Services. Part II: Multiple Services and Companies. In: Proceedings of ICT4S 2020 – 7th International Conference on ICT for Sustainability. ACM, Virtual Conference. (2020). https://doi.org/10.1145/3401335.3401711

  55. Coroamă, V., Bergmark, P., Höjer, M., Malmodin, J.: A Methodology for Assessing the Environmental Effects Induced by ICT Services. Part I: Single services. In: Proceedings of ICT4S 2020 – 7th International Conference on ICT for Sustainability. ACM, Virtual Conference. (2020). https://doi.org/10.1145/3401335.3401716

Download references

Acknowledgements

This research is supported by the research program Sustainable Accessibility and Mobility Services—Mistra SAMS, funded by the Swedish Foundation for Strategic Environmental Research, Mistra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. T. Bieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bieser, J.C.T., Höjer, M. (2022). A Framework for Assessing Impacts of Information and Communication Technology on Passenger Transport and Greenhouse Gas Emissions. In: Wohlgemuth, V., Naumann, S., Behrens, G., Arndt, HK. (eds) Advances and New Trends in Environmental Informatics. ENVIROINFO 2021. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-88063-7_15

Download citation

Publish with us

Policies and ethics