Skip to main content

An Optimized Inner Product Argument with More Application Scenarios

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12919))

Included in the following conference series:

Abstract

The inner product argument is an effective tool to reduce communication complexity in many cryptographic protocols. Bootle et al. (EUROCRYPT’16) presented an inner product argument with a statement including two vector commitments to two vectors and the inner product of the two vectors equals to a public scalar. Bünz et al. (S&P’18) then presented an inner product argument with a statement including only one vector commitment to two vectors. In this paper, we first summarize the scenarios to use inner product arguments based on Bootle et al. and Bünz et al. Then we propose and implement an improved inner product argument for the same statement as Bootle et al. Our argument has a lower communication complexity of \(4\log _2n\) which improves by about 30% when \(n=8192\). Moreover, as most existing inner product argument protocols have a recursive structure, we find the most appropriate recursive round that decides a better communication complexity.

Z. Zhang, Z. Zhou and W. Li contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to the bulletproof library at https://github.com/ZenGo-X/bulletproofs.

  2. 2.

    https://github.com/rust-bitcoin/rust-secp256k1.

References

  1. Attema, T., Cramer, R.: Compressed \(\varSigma \)-protocol theory and practical application to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO. LNCS, vol. 12172, pp. 513–543. Springer (2020)

    Google Scholar 

  2. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

  3. Bowe, S., Grigg, J., Hopwood, D.: Recursive proof composition without a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019)

    Google Scholar 

  4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: S&P, pp. 315–334. IEEE (2018)

    Google Scholar 

  5. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_1

    Chapter  Google Scholar 

  6. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. Cryptology ePrint Archive, Report 2019/1177 (2019)

    Google Scholar 

  7. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 527–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_18

  8. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

    Chapter  Google Scholar 

  9. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22

    Chapter  Google Scholar 

  10. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the discrete log setting, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) CCS, pp. 2093–2110. ACM (2019)

    Google Scholar 

  11. Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arithmetic: Practical structure-preserving cryptography. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) CCS, pp. 2057–2074. ACM (2019)

    Google Scholar 

  12. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16(3), 143–184 (2003)

    Article  MathSciNet  Google Scholar 

  13. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  14. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zksnarks without trusted setup. In: S&P, pp. 926–943. IEEE (2018)

    Google Scholar 

Download references

Acknowledgment

This work is partly supported by the National Natural Science Foundation of China (61972017), the National Cryptography Development Fund (MMJJ20180215), and the Fundamental Research Funds for the Central Universities (YWF-21-BJ-J-1040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhou, Z., Li, W., Tao, H. (2021). An Optimized Inner Product Argument with More Application Scenarios. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds) Information and Communications Security. ICICS 2021. Lecture Notes in Computer Science(), vol 12919. Springer, Cham. https://doi.org/10.1007/978-3-030-88052-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88052-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88051-4

  • Online ISBN: 978-3-030-88052-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics