Skip to main content

Multi-level Residual Attention Network for Speckle Suppression

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13022))

Included in the following conference series:

  • 1739 Accesses

Abstract

In order to achieve effective speckle suppression, we propose a multi-level residual attention network by combining with multi-level block and residual channel attention network, which is suitable for speckle suppression. Firstly, the network model performs a simple shallow feature extraction for the input noise image through two convolution layers. Then, the residual attention network is used to extract the deep features. Finally, a convolution layer and residual learning are used to generate the final denoised image. Experimental results show that the proposed method can effectively suppress the noise and preserve the edge details of the image.

The first author is a student.

This research was funded by National Natural Science Foundation of China under grant 62172139, the Post-graduate’s Innovation Fund Project of Heibei University under grant HBU2021ss002, Natural Science Foundation of Hebei Province under grant F2018210148, F2019201151 and F2020201025, Science Research Project of Hebei Province under grant BJ2020030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P.: A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1(1), 6–43 (2013)

    Article  Google Scholar 

  2. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 157–166 (1982)

    Article  Google Scholar 

  3. Lee, J.S., Jurkevich, L., Dewaele, P., Wambacq, P., Oosterlinck, A.: Speckle filtering of synthetic aperture radar images : a review. Remote Sens. Rev. 8(4), 313–340 (1994)

    Article  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65 (2005)

    Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, vol. 6064, p. 606414 (2006)

    Google Scholar 

  6. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012)

    Article  Google Scholar 

  7. Liu, S.Q., Hu, S.H., Xiao, Y., An, Y.L.: Bayesian Shearlet shrinkage for SAR image de-noising via sparse representation. Multidimension. Syst. Signal Process. 25(4), 683–701 (2013). https://doi.org/10.1007/s11045-013-0225-8

    Article  Google Scholar 

  8. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. Proceedings of the AAAI Conference on Artificial Intelligence 34, 11908–11915 (2020)

    Article  Google Scholar 

  9. Chierchia, G., Cozzolino, D., Poggi, G., Verdoliva, L.: SAR image despeckling through convolutional neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5438–5441 (2017)

    Google Scholar 

  10. Wang, P., Zhang, H., Patel, V.M.: Generative adversarial network-based restoration of speckled SAR images. In: 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5 (2017)

    Google Scholar 

  11. Wang, P., Zhang, H., Patel, V.M.: SAR image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 24(12), 1763–1767 (2017)

    Article  Google Scholar 

  12. Zhang, Q., Yuan, Q., Li, J., Yang, Z., Ma, X.: Learning a dilated residual network for SAR image despeckling. Remote Sens. 10(2), 196 (2018)

    Article  Google Scholar 

  13. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  15. Lee, J.-S.: Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 17(1), 24–32 (1981)

    Article  Google Scholar 

  16. Ma, X., Shen, H., Zhao, X., Zhang, L.: SAR image despeckling by the use of variational methods with adaptive nonlocal functionals. IEEE Trans. Geosci. Remote Sens. 54(6), 3421–3435 (2016)

    Article  Google Scholar 

  17. Gomez, L., Ospina, R., Frery, A.C.: Unassisted quantitative evaluation of despeckling filters. Remote Sens. 9(4), 389 (2017)

    Article  Google Scholar 

  18. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liu, S., et al.: SAR speckle removal using hybrid frequency modulations. IEEE Trans. Geosci. Remote Sens. 59, 3956–3966 (2021)

    Article  Google Scholar 

  20. Liu, S., et al.: Convolutional neural network and guided filtering for SAR image denoising. Remote Sens. 11(6), 702 (2019)

    Article  Google Scholar 

  21. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2808–2817 (2017)

    Google Scholar 

  22. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR 2015 : International Conference on Learning Representations 2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, Y., Liu, S., Zhang, L., Zhao, L., Zhao, J. (2021). Multi-level Residual Attention Network for Speckle Suppression. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13022. Springer, Cham. https://doi.org/10.1007/978-3-030-88013-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88013-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88012-5

  • Online ISBN: 978-3-030-88013-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics