Skip to main content

Characterization Multimodal Connectivity of Brain Network by Hypergraph GAN for Alzheimer’s Disease Analysis

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

Using multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimer’s disease(AD) Analysis. Over recent years the neuroimaging community has made tremendous progress in the study of resting-state functional magnetic resonance imaging (rs-fMRI) derived from blood-oxygen-level-dependent (BOLD) signals and Diffusion Tensor Imaging (DTI) derived from white matter fiber tractography. However, Due to the heterogeneity and complexity between BOLD signals and fiber tractography, Most existing multimodal data fusion algorithms can not sufficiently take advantage of the complementary information between rs-fMRI and DTI. To overcome this problem, a novel Hypergraph Generative Adversarial Networks (HGGAN) is proposed in this paper, which utilizes Interactive Hyperedge Neurons module (IHEN) and Optimal Hypergraph Homomorphism algorithm (OHGH) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI. To evaluate the performance of this model, We use publicly available data from the ADNI database to demonstrate that the proposed model not only can identify discriminative brain regions of AD but also can effectively improve classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dadar, M., et al.: Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimers disease. IEEE Trans. Med. Imaging 36(8), 1758–1768 (2017)

    Article  Google Scholar 

  2. Association, A., et al.: 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 14(3), 367–429 (2018)

    Article  Google Scholar 

  3. Wang, S., Wang, H., Shen, Y., Wang, X.: Automatic recognition of mild cognitive impairment and Alzheimers disease using ensemble based 3D densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 517–523. IEEE (2018)

    Google Scholar 

  4. Huettel, S., Song, A., McCarthy, G.: Functional magnetic resonance imaging. Sinauer associates. Inc, Sunderland, MA, pp. 162–170 (2004)

    Google Scholar 

  5. Westlye, L.T., et al.: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20(9), 2055–2068 (2010)

    Article  Google Scholar 

  6. Wang, S., Hu, Y., Shen, Y., Li, H.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  7. Wang, S., et al.: Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6, 29979–29993 (2018)

    Article  Google Scholar 

  8. Wang, S., Shen, Y., Zeng, D., Hu, Y.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178. IEEE (2018)

    Google Scholar 

  9. Zeng, D., Wang, S., Shen, Y., Shi, C.: A GA-based feature selection and parameter optimization for support tucker machine. Procedia Comput. Sci. 111, 17–23 (2017)

    Article  Google Scholar 

  10. Jeon, E., Kang, E., Lee, J., Lee, J., Kam, T.-E., Suk, H.-I.: Enriched representation learning in resting-state fMRI for early MCI diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 397–406. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_39

    Chapter  Google Scholar 

  11. Wang, S.Q., Li, X., Cui, J.L., Li, H.X., Luk, K.D., Hu, Y.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)

    Article  Google Scholar 

  12. Mo, L.F., Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal. Theory Meth. Appl. 71(12), e834–e838 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Comput. Math. Appl. 58(11–12), 2452–2455 (2009)

    Article  MathSciNet  Google Scholar 

  14. Wang, S.Q., He, J.H.: Variational iteration method for a nonlinear reaction-diffusion process. Int. J. Chemi. Reactor Eng. 6(1) (2008)

    Google Scholar 

  15. Wang, S., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern. Syst. (2020)

    Google Scholar 

  16. Wu, K., Shen, Y., Wang, S.: 3D convolutional neural network for regional precipitation nowcasting. J. Image Signal Process. 7(4), 200–212 (2018)

    Article  Google Scholar 

  17. Zhang, D., Shen, D., Initiative, A.D.N., et al.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 895–907 (2012)

    Article  Google Scholar 

  18. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  19. Lei, B., et al.: Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer’s disease. Med. Image Anal. 61, 101652 (2020)

    Google Scholar 

  20. Lei, B., et al.: Deep and joint learning of longitudinal data for Alzheimer’s disease prediction. Patt. Recogn. 102, 107247 (2020)

    Google Scholar 

  21. Wang, S., Wang, H., Cheung, A.C., Shen, Y., Gan, M.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and. Deep Learn. Appl. 1098, 53 (2020)

    Article  Google Scholar 

  22. Hu, S., Yuan, J., Wang, S.: Cross-modality synthesis from MRI to pet using adversarial U-Net with different normalization. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5. IEEE (2019)

    Google Scholar 

  23. Yu, S., et al.: Multi-scale enhanced graph convolutional network for early mild cognitive impairment detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 228–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_23

    Chapter  Google Scholar 

  24. Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013)

    Article  Google Scholar 

  25. Cao, P., et al.: Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease. Comput. Methods Programs Biomed. 162, 19–45 (2018)

    Article  Google Scholar 

  26. Munsell, B.C., Wu, G., Gao, Y., Desisto, N., Styner, M.: Identifying relationships in functional and structural connectome data using a hypergraph learning method. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 9–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_2

    Chapter  Google Scholar 

  27. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  28. Wang, S., et al.: Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Trans. Autom. Sci. Eng. 18(2), 574–585 (2020)

    Article  Google Scholar 

  29. Yu, W., Lei, B., Ng, M.K., Cheung, A.C., Shen, Y., Wang, S.: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans. Neural Networks Learn. Syst. (2021)

    Google Scholar 

  30. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  31. Hu, S., Yu, W., Chen, Z., Wang, S.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE (2020)

    Google Scholar 

  32. Lei, B., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)

    Google Scholar 

  33. Dong, Y., Sawin, W., Bengio, Y.: HNHN: hypergraph networks with hyperedge neurons. arXiv preprint arXiv:2006.12278 (2020)

  34. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  35. Cui, Z., Zhong, S., Xu, P., Gong, G., He, Y.: Panda: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7, 42 (2013)

    Google Scholar 

  36. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., He, Y.: Gretna: a graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 9, 386 (2015)

    Google Scholar 

  37. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline’’ data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010)

    Google Scholar 

  38. Ashburner, J., et al.: Spm12 manual. wellcome trust centre for neuroimaging. London, UK (2014)

    Google Scholar 

  39. Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural networks. In: IJCAI, pp. 2635–2641 (2019)

    Google Scholar 

  40. Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)

    Article  Google Scholar 

  41. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  42. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Initiative, A.D.N., et al.: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 65, 167–175 (2013)

    Article  Google Scholar 

  43. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  44. Veitch, D.P., et al.: Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s disease neuroimaging initiative. Alzheimer’s Dementia 15(1), 106–152 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundations of China under Grant 61872351, the International Science and Technology Cooperation Projects of Guangdong under Grant 2019A050510030, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and Shenzhen Key Basic Research Project under Grant JCYJ20200109115641762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S. (2021). Characterization Multimodal Connectivity of Brain Network by Hypergraph GAN for Alzheimer’s Disease Analysis. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics