Skip to main content

Multi-criteria Confidence Evaluation for Robust Visual Tracking

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

  • 2382 Accesses

Abstract

To solve the challenge of visual tracking in complex environment, a multi-criteria confidence evaluation strategy is proposed in this paper. Three kinds of criteria are introduced to comprehensively evaluate and analyze the confidence of those tracking results obtained by adaptive spatially-regularized correlation filters (ASRCF). The evaluation result is further utilized to establish the sample management and template updating mechanism, which aims to obtain the best template in the tracking process. The obtained template is used to update both scale filters and position filters in ASRCF. Experimental results on OTB100 and TC128 verify that the proposed method is more robustness compared with other similar algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ke, T., Li, Y.: Research of object detection and tracking algorithm on the video surveillance in electric power system. Electr. Power Sci. Eng. 30(1), 42–46 (2014)

    Google Scholar 

  2. Lu, M., Xu, Y.: A survey of object tracking algorithms. Acta Autom. Sin. 45(7), 1244–1260 (2019)

    MATH  Google Scholar 

  3. Henriques, J., Caseiro, R., Martins, P., et al.: Exploiting the circulant structure of tracking-by-detection with kernels. Lect. Notes Comput. Sci. 7575(1), 702–715 (2012)

    Article  Google Scholar 

  4. Yan, Y., Guo, X., Tang, J., et al.: Learning spatio-temporal correlation filter for visual tracking. Neurocomputing 436, 273–282 (2021)

    Article  Google Scholar 

  5. Danelljan, M., H\(\mathop a\limits^{..}\)ger, G., Khan F.S., et al.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)

    Google Scholar 

  6. Dai, K., Wang, D., Lu, H., et al.: Visual tracking via adaptive spatially-regularized correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4670–4679 (2019)

    Google Scholar 

  7. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 1144–1152 (2017)

    Google Scholar 

  8. Bolme, D.S., Beveridge, J.R., Draper, B.A., et al.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

    Google Scholar 

  9. Danelljan, M., H\(\mathop a\limits^{..}\)ger, G., Khan F.S., et al.: Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430–1438 (2016)

    Google Scholar 

  10. Shi, S., Ma, Y., Li, N., et al.: Adaptive decontamination algorithm based on PSR sample classification. Comput. Eng. Appl., 1–9 (2021). http://kns.cnki.net/kcms/detail/11.2127.TP.20210414.1441.016.html

  11. Danelljan, M., Bhat, G., Khan, F.S., et al.: ECO: efficient convolution operators for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6931–6939 (2017)

    Google Scholar 

  12. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4800–4808 (2017)

    Google Scholar 

  13. Gao, J., Ling, H., Hu, W., et al.: Transfer learning based visual tracking with Gaussian process regression. In: European Conference on Computer Vision, pp. 188–203 (2014)

    Google Scholar 

  14. Wei, B., Wang, Y., He, X.: Confidence map based KCF object tracking algorithm. In: IEEE Conference on Industrial Electronics and Applications, pp. 2187–2192 (2019)

    Google Scholar 

  15. Cai, D., Yu, L., Gao, Y.: High-confidence discrimination via maximum response for object tracking. In: International Conference on Software Engineering and Service Science, pp. 1–4 (2018)

    Google Scholar 

  16. Song, Z., Sun, J., Duan, B.: Collaborative correlation filter tracking with online re-detection. In: IEEE Information Technology, Networking, Electronic and Automation Control Conference, pp. 1303–1313 (2019)

    Google Scholar 

  17. Henriques, J., Caseiro, R., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  18. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Found. Trends 3(1), 1–122 (2011)

    MATH  Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  20. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: European Conference on Computer Vision, pp. 254–265 (2014)

    Google Scholar 

  21. Wang, N., Zhou, W., Tian, Q., et al.: Multi-cue correlation filters for robust visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4844–4853 (2018)

    Google Scholar 

  22. Li, J., Wang, J., Liu, W.: Moving target detection and tracking algorithm based on context information. IEEE Access 7, 70966–70974 (2019)

    Google Scholar 

  23. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  24. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  Google Scholar 

  25. Weijer, J., Schmid, C., Verbeek, J., et al.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  Google Scholar 

  26. Danelljan, M., H\(\mathop a\limits^{..}\)ger, G., Khan F.S.: Discriminative scale space tracking. IEEE Trans Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Google Scholar 

  27. Bertinetto, L., Valmadre, J., Golodetz, S., et al.: Staple: complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1409 (2016)

    Google Scholar 

  28. Li, Y., Fu, C., Ding, F., et al.: AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11920–11929 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by National natural science fund (61643318) and Key research and development program of Ningxia Hui Autonomous Region (2018YBZD0923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1580 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, S., Li, N., Ma, Y., Zheng, L. (2021). Multi-criteria Confidence Evaluation for Robust Visual Tracking. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics