Skip to main content

Aldehyde Modification

  • Chapter
  • First Online:
Physicochemical and Enzymatic Modification of Gums

Abstract

Gums or polysaccharides are one of the principal components in the food and drug systems. They have different functionality such as gelling agent, viscofying agent, emulsifier, whipping agent, stabilizer and so on. Native gums may be having some limitations in their functionality and then should be modified with physical and chemical techniques. Modification done to overcome deficiency of native gum and increased their functionality for growing applications. Crosslinking is a chemical technique that forms connections between two gum fragments. Crosslinking techniques categorized into six groups, namely, (a) Glutaraldehyde crosslinking. (b) Trisodium trimetaphosphate (STMP) crosslinking. (c) Epichlorohydrin crosslinking. (d) Ion’s crosslinking. (e) Crosslinking using emulsification method. (f) Oxidation with sodium periodate. In this chapter, the aldehyde modification of gums with highlighting on crosslinking reaction was discussed. Moreover, the physicochemical, rheological, and interfacial characteristics of cross-linked gums were considered. Finally, application of modified gums and futures perspective were challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003;17(1):25–39.

    Article  CAS  Google Scholar 

  2. Li J-M, Nie S-P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016;53:46–61.

    Article  CAS  Google Scholar 

  3. Milani JM, Golkar A. Health aspect of novel hydrocolloids. In: Emerging natural hydrocolloids: rheology and function. Oxford, UK: Wiley; 2019. p. 601–22.

    Chapter  Google Scholar 

  4. Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ. Modified gums: approaches and applications in drug delivery. Carbohydr Polym. 2011;83(3):1031–47.

    Article  CAS  Google Scholar 

  5. Rana V, Kamboj S, Sharma R, Singh K. Modification of gums: synthesis techniques and pharmaceutical benefits. Handbook of polymers for pharmaceutical technologies: biodegradable polymers. 2015. p. 299–364. Scrivener Publishing LLC., Chapter 10.

    Google Scholar 

  6. Tang H, Gao S, Li Y, Dong S. Modification mechanism of sesbania gum, and preparation, property, adsorption of dialdehyde cross-linked sesbania gum. Carbohydr Polym. 2016;149:151–62.

    Article  CAS  PubMed  Google Scholar 

  7. Gliko-Kabir I, Yagen B, Penhasi A, Rubinstein A. Low swelling, crosslinked guar and its potential use as colon-specific drug carrier. Pharm Res. 1998;15(7):1019–25.

    Article  CAS  PubMed  Google Scholar 

  8. Soppimath KS, Kulkarni AR, Aminabhavi TM. Controlled release of antihypertensive drug from the interpenetrating network poly (vinyl alcohol)–guar gum hydrogel microspheres. J Biomater Sci Polym Ed. 2000;11(1):27–43.

    Article  CAS  PubMed  Google Scholar 

  9. Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, et al. Novel interpenetrating network microspheres of xanthan gum–poly (vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508–19.

    Article  CAS  PubMed  Google Scholar 

  10. George M, Abraham T. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm. 2007;335(1–2):123–9.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Tang H, He Q, Duan X. Cross-linking of partially hydrolyzed sesbania gum, property and characterization. Int J Biol Macromol. 2020;159:11–7.

    Article  Google Scholar 

  12. Gliko-Kabir IG, Yagen B, Penhasi A, Rubinstein A. Phosphated crosslinked guar for colon-specific drug delivery I. Preparation and physicochemical characterization. J Control Release. 2000;63:121–7.

    Article  CAS  PubMed  Google Scholar 

  13. Tao Y, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, et al. Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll. 2016;52:923–33.

    Article  CAS  Google Scholar 

  14. Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym. 2010;79(4):898–907.

    Article  CAS  Google Scholar 

  15. Silva DA, Feitosa JP, Maciel JS, Paula HC, de Paula RC. Characterization of crosslinked cashew gum derivatives. Carbohydr Polym. 2006;66(1):16–26.

    Article  CAS  Google Scholar 

  16. Alupei IC, Popa M, Hamcerencu M, Abadie M. Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol): 1. The study of the swelling properties. Eur Polym J. 2002;38(11):2313–20.

    Article  CAS  Google Scholar 

  17. Dhar N, Setia H, Thakur A, Wanchoo R. Poly (vinyl alcohol) and xanthan gum composite films for sustained release. Res Rev Polym. 2012;3:121–6.

    CAS  Google Scholar 

  18. Zhang H, Fang B, Lu Y, Qiu X, Jin H, Liu Y, et al. Rheological properties of water-soluble cross-linked xanthan gum. J Dispers Sci Technol. 2017;38(3):361–6.

    Article  CAS  Google Scholar 

  19. Oprea A-M, Nistor M-T, Profire L, Popa MI, Lupusoru CE, Vasile C. Evaluation of the controlled release ability of theophylline from xanthan/chondroitin sulfate hydrogels. J Biomater Nanobiotechnol. 2013;4:123–31.

    Article  Google Scholar 

  20. Ali A, Ganie SA, Mazumdar N. A new study of iodine complexes of oxidized gum arabic: an interaction between iodine monochloride and aldehyde groups. Carbohydr Polym. 2018;180:337–47.

    Article  CAS  PubMed  Google Scholar 

  21. Kim U-J, Kuga S, Wada M, Okano T, Kondo T. Periodate oxidation of crystalline cellulose. Biomacromolecules. 2000;1(3):488–92.

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Ge L, Li X, Mu C, Li D. Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll. 2014;39:243–50.

    Article  CAS  Google Scholar 

  23. Pandit AH, Mazumdar N, Imtiyaz K, Rizvi MMA, Ahmad S. Periodate-modified gum Arabic cross-linked PVA hydrogels: a promising approach toward Photoprotection and sustained delivery of folic acid. ACS Omega. 2019;4(14):16026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Tong L, Zheng Y, Pang S, Sha J, Li L, et al. Hydrogels with self-healing ability, excellent mechanical properties and biocompatibility prepared from oxidized gum arabic. Eur Polym J. 2019;117:363–71.

    Article  CAS  Google Scholar 

  25. Mozafari H, Hojjatoleslamy M, Mohammadizadeh M. Optimizing the properties of Zodo gum and examining its potential for amino acid binding by periodate oxidation. Int J Biol Macromol. 2021;167:1517–26.

    Article  CAS  PubMed  Google Scholar 

  26. Bajpai S, Saxena SK, Sharma S. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate–carboxymethyl guar gum blend beads. React Funct Polym. 2006;66(6):659–66.

    Article  CAS  Google Scholar 

  27. Singh BN, Kim KH. Characterization and relevance of physicochemical interactions among components of a novel multiparticulate formulation for colonic delivery. Int J Pharm. 2007;341(1–2):143–51.

    Article  CAS  PubMed  Google Scholar 

  28. Kofinas P, Athanassiou V, Merrill EW. Hydrogels prepared by electron irradiation of poly (ethylene oxide) in water solution: unexpected dependence of cross-link density and protein diffusion coefficients on initial PEO molecular weight. Biomaterials. 1996;17(15):1547–50.

    Article  CAS  PubMed  Google Scholar 

  29. Singh B, Vashishtha M. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery. Nucl Instrum Methods Phys Res, Sect B. 2008;266(9):2009–20.

    Article  CAS  Google Scholar 

  30. Soppirnath KS, Aminabhavi TM. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur J Pharm Biopharm. 2002;53(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  31. Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. 2013;62(11):605–11.

    Article  Google Scholar 

  32. Tang H, Liu Y, Li Y, Li Q, Liu X. Hydroxypropylation of cross-linked sesbania gum, characterization and properties. Int J Biol Macromol. 2020;152:1010–9.

    Article  PubMed  Google Scholar 

  33. Su L, Ji W, Lan W, Dong X. Chemical modification of xanthan gum to increase dissolution rate. Carbohydr Polym. 2003;53(4):497–9.

    Article  CAS  Google Scholar 

  34. Thakur K, Ahuja M, Kumar A. Carboxymethyl functionalization of amylopectin and its evaluation as a nanometric drug carrier. Int J Biol Macromol. 2013;62:25–9.

    Article  CAS  PubMed  Google Scholar 

  35. Cunha PL, Castro RR, Rocha FA, de Paula RC, Feitosa JP. Low viscosity hydrogel of guar gum: preparation and physicochemical characterization. Int J Biol Macromol. 2005;37(1–2):99–104.

    Article  CAS  PubMed  Google Scholar 

  36. Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym. 2013;92(2):1685–99.

    Article  CAS  PubMed  Google Scholar 

  37. Kuan Y-H, Bhat R, Senan C, Williams PA, Karim AA. Effects of ultraviolet irradiation on the physicochemical and functional properties of gum Arabic. J Agric Food Chem. 2009;57:9154–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lin J, Wang Z, Meng H, Guo X. Genipin crosslinked gum arabic: synthesis, characterization, and emulsification properties. Carbohydr Polym. 2021;261:117880.

    Article  CAS  PubMed  Google Scholar 

  39. Jani G, Goswami J, Prajapati V, Zinzuwadia M, Joshi B, Dabhi A. Studies on formulation and evaluation of new superdisintegrants for dispersible tablets. Int J Pharm. 2005;2:37–43.

    Google Scholar 

  40. Rai PR, Tiwary AK, Rana V. Superior disintegrating properties of calcium cross-linked Cassia fistula gum derivatives for fast dissolving tablets. Carbohydr Polym. 2012;87:1098–104.

    Article  CAS  Google Scholar 

  41. Reddy MM, Reddy JD, Moin A, Shivakumar HG. Formulation of sustained-relase matrix tablets using crosslinked karaya gum. Trop J Pharm Res. 2012;11(1):28–35.

    Article  CAS  Google Scholar 

  42. Bhosale RR, Osmani RAM, Moin A. Formulation and evaluation of sustained release dosage form using modified cashew gum. Int J Pharm Pharm Sci. 2015;7(4):141–50.

    CAS  Google Scholar 

  43. Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm. 2000;26(10):1025–38.

    Article  CAS  PubMed  Google Scholar 

  44. Oliveira GF, Ferrari PC, Carvalho LQ, Evangelista RC. Chitosan–pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carbohydr Polym. 2010;82(3):1004–9.

    Article  CAS  Google Scholar 

  45. Agnihotri SA, Jawalkar SS, Aminabhavi TM. Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. Eur J Pharm Biopharm. 2006;63(3):249–61.

    Article  CAS  PubMed  Google Scholar 

  46. Babu RJ, Sathigari S, Kumar MT, Pandit J. Formulation of controlled release gellan gum macro beads of amoxicillin. Curr Drug Deliv. 2010;7(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  47. Das A, Wadhwa S, Srivastava A. Cross-linked guar gum hydrogel discs for colon-specific delivery of ibuprofen: formulation and in vitro evaluation. Drug Deliv. 2006;13(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  48. Carbinatto FM, de Castro AD, Evangelista RC, Cury BS. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9(1):27–34.

    Article  Google Scholar 

  49. Das S, Ng K-U. Impact of glutaraldehyde on in vivo colon-specific release of resveratrol from biodegradable pectin-based formulation. J Pharm Sci. 2010;99(12):4903–16.

    Article  CAS  PubMed  Google Scholar 

  50. Oliveira Cardoso VM, Evangelista RC, GremiĂŁo MPD, Cury BSF. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol. 2020;55:101445.

    Article  Google Scholar 

  51. Hosseini MS, Nabid MR. Synthesis of chemically cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug delivery applications. Int J Biol Macromol. 2020;163:336–47.

    Article  CAS  PubMed  Google Scholar 

  52. Trinetta V, Cutter CN, Floros J. Effects of ingredient composition on optical and mechanical properties of pullulan film for food-packaging applications. LWT-Food Sci Technol. 2011;44(10):2296–301.

    Article  CAS  Google Scholar 

  53. Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W. Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J. 2013;17(3):57–66.

    Article  Google Scholar 

  54. Krishnakumar GS, Sampath S, Muthusamy S, John MA. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: a systematic review. Mater Sci Eng C. 2019;96:941–54.

    Article  CAS  Google Scholar 

  55. Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang D-A. An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem. 2009;19(14):1968–77.

    Article  CAS  Google Scholar 

  56. Nasalapure VKA, Chalannavar RK, Gani RS, Kasai DR. Preparation and characterization of polyvinyl alcohol and carboxy methyl cellulose hydrogel film for biomedical application. Proceedings of the International Conference on Physics of Materials and Nanotechnology ICPN. 2019.

    Google Scholar 

  57. Akrami-Hasan-Kohal M, Ghorbani M, Mahmoodzadeh F, Nikzad B. Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications. Int J Biol Macromol. 2020;160:669–76.

    Article  CAS  PubMed  Google Scholar 

  58. Nezhad-Mokhtari P, Ghorbani M, Abdyazdani N. Reinforcement of hydrogel scaffold using oxidized-guar gum incorporated with curcumin-loaded zein nanoparticles to improve biological performance. Int J Biol Macromol. 2021;167:59–65.

    Article  CAS  PubMed  Google Scholar 

  59. Joglekar MM, Ghosh D, Anandan D, Yatham P, Jayant RD, Nambiraj NA, Jaiswal AK. Crosslinking of gum-based composite scaffolds for enhanced strength and stability: a comparative study between sodium trimetaphosphate and glutaraldehyde. J Biomed Mater Res. 2020;108:3147–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golkar, A., Taghavi, S.M., Saleki, M., Milani, J.M. (2021). Aldehyde Modification. In: Gahruie, H.H., Eskandari, M.H., Mousavi Khaneghah, A., Ghiasi, F. (eds) Physicochemical and Enzymatic Modification of Gums. Springer, Cham. https://doi.org/10.1007/978-3-030-87996-9_3

Download citation

Publish with us

Policies and ethics