Skip to main content

Comparative Advantages of the Mineral Processing of Deep-Sea Polymetallic Nodules over Terrestrial Ores

  • Chapter
  • First Online:
Perspectives on Deep-Sea Mining

Abstract

A review of comparative advantages of mineral processing of deep-sea polymetallic nodules over terrestrial ores is attempted. The work conducted as part of Global Sea Mineral Resources’ onshore processing development strategy has contributed to answer the critical questions related to the choice of the flow sheet, the adequateness of the beneficiation of polymetallic nodules, the behavior of nodules with regard to comminution, and how it compares to land-based ores in terms of energy intensity. The results suggest there is an undisputable environmental advantage associated with the comminution of polymetallic nodules as compared to conventional (monometallic) land-based ores, due to their higher grade, polymetallic character, and comminution behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the comminution results, masses are expressed in short tons. We use “metric ton” when necessary to show the difference.

References

  • Anonymous (2019). Retrieved July 16, 2021, from Managem Corporate website: http://www.managemgroup.com/en/bou-azzer-mine

  • Ballantyne, G., & Powell, M. (2014). Benchmarking comminution energy consumption for the processing of copper and gold ores. Minerals Engineering, 65, pp. 109-114.

    Google Scholar 

  • Barnes, S. S. (1967). Minor Element Composition of Ferromanganese Nodules. Science, 157(3784), 63–65. https://doi.org/10.1126/science.157.3784.63

    Article  Google Scholar 

  • Bayat, O., Altiner, M., & Top, S. (2013). Investigation of the beneficiation of low grade manganese ores. 23rd International Mining Congress & Exhibition of Turkey. Antalya.

    Google Scholar 

  • Bond, F. C. (1961a, June). Crushing & grinding calculations - Part I. British Chemical Engineering, 6(6), pp. 378-385.

    Google Scholar 

  • Bond, F. C. (1961b, August). Crushing & grinding calculations - Part II. Britisch Chemical Engineering, 6(8), pp. 543-548.

    Google Scholar 

  • Bond, F. C. (1963). Metal wear in crushing and grinding. Allis-Chalemers.

    Google Scholar 

  • Brooke, J. N., & Prosser, A. P. (1969). Manganese nodules a a source of copper and nickel - mineralogical assessment and extraction. Trans. Inst. Min. Metall., 78(C), 64-73.

    Google Scholar 

  • Burns, R. G., & Fuerstenau, D. W. (1966, May-June). Electron-probe determination of inter-element relationships in manganese nodules. The American Mineralogist, 51, pp. 895-902.

    Google Scholar 

  • Caceres, D. V., Feno, M. R., & Mtibaa, A. (2020). Dimensionnement d’espaces de travail intĂ©grant les surfaces d’usage des Ă©quipements. MOSIM. Agadir, Maroc.

    Google Scholar 

  • De Bakker, J. (2014, March). Energy use of fine grinding in mineral processing. Metallurgical and Materials Transactions E, 1E, pp. 8-19. https://doi.org/10.1007/s40553-013-0001-6

  • DeWolfe, J., & Ling, P. (2018). NI43-101 Technical report for the NORI Clarion-Clipperton Zone project, Pacific Ocean. Golder Associates/Deep Green.

    Google Scholar 

  • Dreiseitl, I., & Bednarek, R. (2011). Physical Properties of Polymetallic Nodules and Deep Sea Sediments, as Determined with Different Analytical Techniques. Proceedings of the Ninth (2011) ISOPE Ocean Mining Symposium (pp. 178-183). Maui, Hawaii, USA: The International Society of Offshore and Polar Engineers (ISOPE).

    Google Scholar 

  • Dreiseitl, I., 2017. About geotechnical properties of the deep seabed polymetallic nodules.In: 18th International Conference on the Transport and Sedimentation of SolidParticles, 11-15 September, Prague, Czech Republic.

    Google Scholar 

  • Dunne, R. C., Kawatra, S. K., & Young, C. A. (Eds.). (2019). SME Mineral Processing & Extractive Metallurgy Handbook. SME.

    Google Scholar 

  • Fuerstenau, D. W., & Han, K. N. (1977). Chapter 12 Extractive Metallurgy. In G. P. Glasby (Ed.), Marine Manganese Deposits (Elsevier Oceanography Series ed., Vol. 15, pp. 357-390). Elsevier. https://doi.org/10.1016/S0422-9894(08)71026-2

  • Fuerstenau, D. W., & Han, K. N. (1983). Metallurgy and processing of marine manganese nodules. Mineral Processing and Extractive Metallurgy Review, 1(1-2), pp. 1-83. https://doi.org/10.1080/08827508308952589

  • Fuerstenau, M. (1981). Comminution and Energy Consumption. National Research Council. Washington, DC: The National Academies Press. https://doi.org/10.17226/19669

    Google Scholar 

  • Fuerstenau, M. C., & Han, K. N. (2003). Principles of mineral processing. Society for Mining, Metallurgy, and Exploration, Inc. (SME).

    Google Scholar 

  • Fuerstenau, M., Han, K., & Miller, J. (1986). Flotation behavior of chromium and manganese minerals. Proc. Arbiter Symposium, Advances in Mineral Processing, (pp. 289-307).

    Google Scholar 

  • Gao, L., Liu, Z., Chu, M., Wang, R., Wang, Z., & Feng, C. (2019). Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique. Separation Science and Technology, 54(1), 195-206. https://doi.org/10.1080/01496395.2018.1504795

    Article  Google Scholar 

  • Gao, Y., Olivas-Martinez, M., Sohn, H., Kim, H., & Kim, C. (2012). Upgrading of Low-Grade Manganese Ore by Selective reduction of iron oxide and magnetic separation. Metallurgical and Materials Transactions B, 43(6), 1467-1475. https://doi.org/10.1007/s11663-012-9731-6

    Article  Google Scholar 

  • Giovanoli, R, Staehli, E, Feitknecht, W (1970), Ueber oxihydroxyde des vierwertigen Mangans mit Schichtengitter, Helv. Chim. Acta, 53, 209–220.

    Google Scholar 

  • Gupta, A., & Yan, D. S. (2016). Mineral Processing Design and Operations: An Introduction. Elsevier.

    Google Scholar 

  • Haynes, B. W. (1985). Pacific manganese nodules, characterization and processing. US Bureau of Mines.

    Google Scholar 

  • Hesse, R., & Schacht, U. (2011). Early Diagenesis of Deep-Sea Sediments. Developments in Sedimentology, 557–713. https://doi.org/10.1016/b978-0-444-53000-4.00009-3

  • Kuhn, T., Wegorzewski, A., Ruehlemann, C., & Vink, A. (2017). Composition, formation, and occurrence of polymetallic nodules. In R. Sharma (Ed.), Deep Sea Mining, Resource potential, technical and environmental considerations (pp. 23-63). Springer.

    Google Scholar 

  • Leonhardt, H. (1979). Untersuchungen zur Aufbereitbarkeit von Manganknollen. Ph.D. Thesis, RWTH, Aachen.

    Google Scholar 

  • Mehdilo, A., & Irannajad, M. (2014). Evaluation of pyrolusite flotation behavior using a cationic collector. Journal of Mining Science, 50(5), 982-993. https://doi.org/10.1134/S1062739114050184

    Article  Google Scholar 

  • Mudd, G. (2010). The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resources Policy, 35, pp. 98-115. https://doi.org/10.1016/j.resourpol.2009.12.001

  • Mukherjee, A., Raichur, A., Natarajan, K., & Modak, J. (2004). Recent developments in processing ocean manganese nodules - a critical review. Mineral Processing & Exatrctive Metallurgy Review, 25(2), pp. 91-127. https://doi.org/10.1080/08827500490433188

  • Napier-Munn, T. (2013). Comminution energy and how to reduce it. Retrieved from http://www.ceecthefuture.org/wp-content/uploads/2013/01/Napier-Munn-CEEC-3-12.pdf

  • Northey, S., Mudd, G., & Werner, T. (2018, April). Unresoved complexity in assessments of mineral resource depletion and availability. Natural Resources Research, 27(2). https://doi.org/10.1007/s11053-017-9352-5

  • Parrent, M. (2012). Separation of pyrolusite and hematite by froth flotation. Edmonton: University of Alberta.

    Google Scholar 

  • Post, J. E. (1999). Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96(7), 3447–3454. https://doi.org/10.1073/pnas.96.7.3447

    Article  Google Scholar 

  • Rahimi, S., Irannajad, M., & Mehdilo, A. (2017). Comparative studies of two cationic collectors in the flotation of pyrolusite and calcite. International Journal of Mineral Processing. https://doi.org/10.1016/j.minpro.2017.07.016

  • Rötzer, N., & Schmidt, M. (2020). Historical, current, and future energy demand from global copper production and its impact on climate change. Resources, 9(42). https://doi.org/10.3390/resources9040044

  • Singh, V., Chakraborty, T., & Tripathy, S. K. (2019). A review of low grade manganese upgradation processes. Mineral Processing and Exrtractive Metallurgy Review. https://doi.org/10.1080/08827508.2019.1634567

  • Sridhar, R. (1974, December). Thermal upgrading of sea nodules. JOM, 26.

    Google Scholar 

  • van de Vijfeijken, M. (2010, October). Mills and GMDs. International Mining, pp. 30-31.

    Google Scholar 

  • Van Wijk, J.M.; Hoog, E.D. Size reduction of CCZ polymetallic nodules under repeated impact fragmentation. Results Eng. 2020, 7, 100154

    Article  Google Scholar 

  • Wang, X., SchloĂźmacher, U., Wiens, M., Schröder, H. C., MĂĽller, W. E. G. Biogenic Origin of Polymetallic Nodulesfrom the Clarion-Clipperton Zone in the EasternPacific Ocean: Electron Microscopic and EDX Evidence. Mar Biotechnol (2009) 11:99–108. https://doi.org/10.1007/s10126-008-9124-7

    Article  Google Scholar 

  • Wegorzewski, A. (2018, November). Thermal Pre-Treatment of Polymetallic Nodules to Create Metal (Ni, Cu, Co)-Rich Individual Particles for Further Processing. Minerals, 523.

    Google Scholar 

  • Wills, B. A., & Napier-Munn, T. (2006). Will’s mineral processing technology (7th ed.). Elsevier Science & Technology Books.

    Google Scholar 

  • Yoon, C. H., Kim, J., Park, H., Yoo, K. (2015). The distribution of particle size and composition ofmanganese nodule comminuted during lifting, Geosystem Engineering, 18:6, 348-352. https://doi.org/10.1080/12269328.2015.1103198

    Article  Google Scholar 

  • Zhao, F., Jiang, X., Wang, S., Feng, L., & Li, D. (2020). The recovery of valuable metals from ocean polymetallic nodules using solid-state metalized reduction technology. Minerals, 10(20). https://doi.org/10.3390/min10010020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Duhayon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duhayon, C., Boel, S. (2022). Comparative Advantages of the Mineral Processing of Deep-Sea Polymetallic Nodules over Terrestrial Ores. In: Sharma, R. (eds) Perspectives on Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-87982-2_8

Download citation

Publish with us

Policies and ethics