Skip to main content

Conceptual 3D Modeling and Direct Block Scheduling of a Massive Seafloor Sulfide Occurrence

  • Chapter
  • First Online:
Perspectives on Deep-Sea Mining

Abstract

The transition toward more environmentally friendly energy production and e-mobility will increase the global demand for metals and minerals. The ocean floor might contribute to meet this demand. This would require that the mineral resources are managed well, from both governmental and industry perspectives. Strategic mine planning is an integrated part of such a management process and is here developed for deep-sea mining based on state-of-the-art methodologies developed for onshore mining. Focus is on seafloor massive sulfides (SMS) deposits known to contain anomalous amounts of, for example, copper, zinc, gold, and silver. It is known that the deposits can form cone-shaped ore geometries. This calls for a mining method inspired from onshore open pit mining. Conceptual 3D geometric and qualimetric models of the Loki’s Castle occurrence along the Arctic Mid-Ocean Ridge are developed. Based on these models and the characteristics of a preferred mining system, a 3D economic block model is developed. This model is used in direct block scheduling with varying sets of assumptions to develop the ultimate pit and schedules for a potential extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Mining width corresponds to the minimum mining width that effectively can be mined given the preferred mining equipment. For the deep-sea mining case, this would be defined by the dimensions of the seafloor production tool (the SPT).

  2. 2.

    Large assumption; although textural information from the TAG deposit is favorable and good processing performance is obtained on Solwara 1 samples, overall processing performance is uncertain.

References

  • Alford, C., & Hall, B. (2009). Stope Optimization Tools for Selection of Optimum Cut-Off Grade in Underground Mine Design. In Project Evaluation Conference 2009: Melbourne, Australia, 21 - 22 April 2009 (pp. 137–144). Presented at the Project Evaluation Conference, Red Hook, NY: Curran.

    Google Scholar 

  • Alford, C., Brazil, M., & Lee, D. H. (2007). Optimisation in Underground Mining. In Handbook of operations research in natural resources. New York: Springer Science Business Media.

    Google Scholar 

  • Asakawa, E., Murakami, F., Tara, K., Saito, S., Tsukahara, H., & Lee, S. (2018). Multi-Stage Seismic Survey for Seafloor Massive Sulphide (SMS) Exploration. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO) (pp. 1–4). Presented at the 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO), Kobe: IEEE. https://doi.org/10.1109/OCEANSKOBE.2018.8559188

  • Askari-Nasab, H., Pourrahimian, Y., Ben-Awuah, E., & Kalantari, S. (2011). Mixed integer linear programming formulations for open pit production scheduling. Journal of Mining Science, 47(3), 338–359. https://doi.org/10.1134/S1062739147030117

    Article  Google Scholar 

  • Baumberger, T., Früh-Green, G. L., Thorseth, I. H., Lilley, M. D., Hamelin, C., Bernasconi, S. M., et al. (2016). Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge. Geochimica et Cosmochimica Acta, 187, 156–178. https://doi.org/10.1016/j.gca.2016.05.017

    Article  Google Scholar 

  • Beretta, F. S., &Marinho, A. (2015). The impacts of slope angle approximations on open pit mining production scheduling, 11.

    Google Scholar 

  • Blaauw, F. J. J., &Trevarthen, N. C. D. (1987). Mineral Resource Management: An Overview of an Integrated Graphics Based System. In Proceedings of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries (Vol. 1, pp. 255–264). Presented at the APCOM 87, Johannesburg: SAIMM. http://www.saimm.co.za/Conferences/Apcom87Mining/255-Blaauw.pdf

  • Campos, P. H. A., Arroyo, C. E., & Morales, N. (2018). Application of optimized models through direct block scheduling in traditional mine planning, 118, 6.

    Google Scholar 

  • Camus, J. P. (2002). Management of mineral resources: creating value in the mining business. Littleton, Colo: Society for Mining, Metallurgy, and Exploration.

    Google Scholar 

  • Camus, J. P. (2015). Management of mineral resources, 9.

    Google Scholar 

  • Chilès, J. P., &Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty (Vol. 713). Wiley.

    Google Scholar 

  • Darling, P. (Ed.). (2011). Sme Mining Engineering Handbook. Society for Mining Metallurgy.

    Google Scholar 

  • de Sá, V. R., Koike, K., Goto, T., Nozaki, T., Takaya, Y., & Yamasaki, T. (2020). A Combination of Geostatistical Methods and Principal Components Analysis for Detection of Mineralized Zones in Seafloor Hydrothermal Systems. Natural Resources Research. https://doi.org/10.1007/s11053-020-09705-4

  • de Sá, V. R., Koike, K., Goto, T., Nozaki, T., Takaya, Y., & Yamasaki, T. (2021). 3D Geostatistical Modeling of Metal Contents and Lithofacies for Mineralization Mechanism Determination of a Seafloor Hydrothermal Deposit in the Middle Okinawa Trough, Izena Hole, Ore Geology Reviews, 104194. https://doi.org/10.1016/j.oregeorev.2021.104194

  • Eberhardt, E. (2012). The Hoek–Brown Failure Criterion. Rock Mechanics and Rock Engineering, 45(6), 981–988. https://doi.org/10.1007/s00603-012-0276-4

    Article  Google Scholar 

  • Emery, X. (2004). Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 18(6), 401–413. https://doi.org/10.1007/s00477-004-0211-7

    Article  Google Scholar 

  • Fuerstenau, M. C., Jameson, G. J., & Yoon, R.-H. (Eds.). (2007). Froth flotation: a century of innovation. Littleton, Colo: Society for Mining, Metallurgy, and Exploration.

    Google Scholar 

  • Gallant, R. M., & Von Damm, K. L. (2006). Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°-25°S, Central Indian Ridge: Controls on hydrothermal fluids. Geochemistry, Geophysics, Geosystems, 7(6), n/a-n/a. https://doi.org/10.1029/2005GC001067

  • Galley, A. G., Hannington, M. D., &Jonasson, I. R. (2007). Volcanogenic Massive Sulphide deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (Vol. 5, pp. 141–161). Geological Association of Canada, Mineral Deposits Division.

    Google Scholar 

  • Gamo, T., Chiba, H., Yamanaka, T., Okudaira, T., Hashimoto, J., Tsuchida, S., et al. (2001). Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 193, 371–379.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Graber, S., Petersen, S., Yeo, I., Szitkar, F., Klischies, M., Jamieson, J., et al. (2020). Structural Control, Evolution, and Accumulation Rates of Massive Sulfides in the TAG Hydrothermal Field. Geochemistry, Geophysics, Geosystems, 21(9). https://doi.org/10.1029/2020GC009185

  • Grant, H. L. J., Hannington, M. D., Petersen, S., Frische, M., & Fuchs, S. H. (2018). Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chemical Geology, 498, 45–71. https://doi.org/10.1016/j.chemgeo.2018.08.019

    Article  Google Scholar 

  • GRID Arendal. (2014). Deep sea mining - Example of a sea-floor massive sulphide mining system and related sources of potential environmental impact. https://www.grida.no/resources/8156. Accessed 7 January 2015

  • Han, Y., Gonnella, G., Adam, N., Schippers, A., Burkhardt, L., Kurtz, S., et al. (2018). Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Scientific Reports, 8(1), 10386. https://doi.org/10.1038/s41598-018-28613-5

    Article  Google Scholar 

  • Hannington, M. D., Galley, A. G., Herzig, P. M., & Petersen, S. (1998). Comparison of The Tag Mound and Stockwork Complex with Cyprus-Type Massive Sulfide Deposits. In P. M. Herzig, S. E. Humphris, D. J. Miller, & R. A. Zierenberg (Eds.), Proceedings of the Ocean Drilling Program, 158 Scientific Results (Vol. 158). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.158.1998

    Chapter  Google Scholar 

  • Hartman, H. L., Mutmansky, J. M., (2002). Introductory mining engineering, 2nd ed. ed. J. Wiley, Hoboken, N. J.

    Google Scholar 

  • Haugen, S. (2015). Fra separate fagdisipliner til integrert mineralressursforvaltning i bergindustrien. Mineralproduksjon, 6, 19–38.

    Google Scholar 

  • Herzig, P. M., Humphris, S. E., Miller, D. J., & Zierenberg, R. A. (Eds.). (1998a). Data report: Sulfide textures in the active tag massive sulfide deposit, 26°N, mid-atlantic ridge (Vol. 158). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.158.1998

  • Herzig, P. M., Humphris, S. E., Miller, D. J., & Zierenberg, R. A. (Eds.). (1998b). Documenting Textures And Mineral Abundances In Minicores From The Tag Active Hydrothermal Mound Using X-Ray Computed Tomography (Vol. 158). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.158.1998

  • Hoek, E. (1968). Brittle Fracture of Rock. In K. G. Stagg & O. C. Zienkiewicz (Eds.), Rock Mechanics in Engineering Practice (pp. 99–124). London: J. Wiley.

    Google Scholar 

  • Humphris, S. E., Herzig, P. M., Miller, D. J., Alt, J. C., Becker, K., Brown, D., et al. (1995). The internal structure of an active sea-floor massive sulphide deposit. Nature, 377(6551), 713–716. https://doi.org/10.1038/377713a0

    Article  Google Scholar 

  • Ishibashi, J., Ikegami, F., Tsuji, T., & Urabe, T. (2015). Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. In J. Ishibashi, K. Okino, & M. Sunamura (Eds.), Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept (pp. 337–359). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-54865-2_27

    Chapter  Google Scholar 

  • Jankowski, P., Heymann, E., Chwastiak, P., See, A., Munro, P., & Lipton, I. (2010). Offshore Production System Definition and Cost Study (No. SL01-NSG-XSR-RPT-7105–001) (p. 275).

    Google Scholar 

  • Johnson, T. B. (1968). OPTIMUM OPEN PIT MINE PRODUCTION SCHEDULING: Fort Belvoir, VA: Defense Technical Information Center. https://doi.org/10.21236/AD0672094

  • JORC. (2012). Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Joint Ore Reserves Committee: The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia. http://www.jorc.org/docs/JORC_code_2012.pdf

  • Kane, K. A., & Hayes, D. E. (1992). Tectonic corridors in the south Atlantic: Evidence for long-lived mid-ocean ridge segmentation. Journal of Geophysical Research, 97(B12), 14.

    Article  Google Scholar 

  • Kowalczuk, P. B., Manaig, D. O., Drivenes, K., Snook, B., Aasly, K., &Kleiv, R. A. (2018). Galvanic Leaching of Seafloor Massive Sulphides Using MnO2 in H2SO4-NaCl Media. Minerals, 8(6), 235. https://doi.org/10.3390/min8060235

    Article  Google Scholar 

  • Kowalczuk, P. B., Bouzahzah, H., Kleiv, R. A., & Aasly, K. (2019). Simultaneous Leaching of Seafloor Massive Sulfides and Polymetallic Nodules. Minerals, 9(8), 482. https://doi.org/10.3390/min9080482

    Article  Google Scholar 

  • Kumagai, H., Nakamura, K., Toki, T., Morishita, T., Okino, K., Ishibashi, J.-I., et al. (2008). Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: Implications of their vent fluids’ distinct chemistry. Geofluids, 8(4), 239–251. https://doi.org/10.1111/j.1468-8123.2008.00223.x

    Article  Google Scholar 

  • Lerchs, H., & Grossmann, F. (1965). Optimum design of open-pit mines. Canadian Mining Metallurgical Bulletin, 58, 17–24.

    Google Scholar 

  • Lesage, M. (2020). A framework for evaluating deep sea mining systems for seafloor massive sulphides deposits. Norwegian University of Science and Technology.

    Google Scholar 

  • Lesage, M., Juliani, C., & Ellefmo, S. (2018). Economic Block Model Development for Mining Seafloor Massive Sulfides. Minerals, 8(10), 468. https://doi.org/10.3390/min8100468

    Article  Google Scholar 

  • Lim, A., Brönner, M., Johansen, S. E., & Dumais, M. (2019). Hydrothermal Activity at the Ultraslow-Spreading Mohns Ridge: New Insights From Near-Seafloor Magnetics. Geochemistry, Geophysics, Geosystems, 20(12), 5691–5709. https://doi.org/10.1029/2019GC008439

    Article  Google Scholar 

  • Lipton, I. (2012). Mineral resource estimate. Solwara Project, Bismarck Sea, PNG (No. SRK Project Number NAT002) (p. 240).

    Google Scholar 

  • Lipton, I., Gleeson, E., & Munro, P. (2018). Preliminary Economic Assessment of the Solwara Project, Bismarck Sea, PNG (Technical Report compiled under NI 43-101 No. AMC Project 317045) (p. 274).

    Google Scholar 

  • Little, J., Nehring, M., &Topal, E. (2008). A New Mixed-Integer Programming Model for Mine Production Scheduling Optimisation in Sublevel Stope Mining, 17.

    Google Scholar 

  • Ludvigsen, M., Aasly, K., Ellefmo, S., Hilario, A., Ramirez-Llodra, E., Søreide, F., et al. (2016). MarMine Cruise report Arctic Mid-Ocean Ridge (AMOR) 15.08.2016 – 05.09.2016 (No. 1) (p. 120). Trondheim: NTNU.

    Google Scholar 

  • Ludwig, R., Iturrino, G. J., & Rona, P. A. (1998). Seismic Velocity–Porosity Relationship of Sulfide, Sulfate, And Basalt Samples From The Tag Hydrothermal Mound. In Proceedings of the Ocean Drilling Program - 158 (Vol. 158). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.158.1998

  • Macfarlane, A. S. (2006). Establishing a new metric for mineral resource management. The Journal of The South African Institute of Mining and Metallurgy, 106, 187–198.

    Google Scholar 

  • Marinos, V. (2019). A revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flysch. Bulletin of Engineering Geology and the Environment, 78(2), 899–912. https://doi.org/10.1007/s10064-017-1151-z

    Article  Google Scholar 

  • McCarthy, P. L. (2015). Integrated Mining and Metallurgical Planning and Operation, 11.

    Google Scholar 

  • Mining.com. (2021a, March 19). Supply squeeze drags copper treatment charges below $20 a tonne. https://www.mining.com/web/supply-squeeze-drags-copper-treatment-charges-below-20-a-tonne/?utm_source=Daily_Digest&utm_medium=email&utm_campaign=MNG-DIGESTS&utm_content=supply-squeeze-drags-copper-treatment-charges-below-20-a-tonne. Accessed 26 May 2021

  • Mining.com. (2021b, April 19). Copper price rallies toward nine-year high on increased demand. https://www.mining.com/copper-price-rallies-toward-nine-year-highs-amid-increased-demand/?utm_source=Daily_Digest&utm_medium=email&utm_campaign=MNG-DIGESTS&utm_content=copper-price-rallies-toward-nineyear-high-on-increased-demand

  • MiningMath. (2020, February 7). Online tutorial. MiningMath. https://miningmath.com/course/online-tutorial/. Accessed 7 February 2020

  • Montiel, L., &Dimitrakopoulos, R. (2017). A heuristic approach for the stochastic optimization of mine production schedules. Journal of Heuristics, 23(5), 397–415. https://doi.org/10.1007/s10732-017-9349-6

    Article  Google Scholar 

  • Morales, N., Seguel, S., Cáceres, A., Jélvez, E., &Alarcón, M. (2019). Incorporation of Geometallurgical Attributes and Geological Uncertainty into Long-Term Open-Pit Mine Planning. Minerals, 9(2), 108. https://doi.org/10.3390/min9020108

    Article  Google Scholar 

  • Murton, B. J., Lehrmann, B., Dutrieux, A. M., Martins, S., de la Iglesia, A. G., Stobbs, I. J., et al. (2019). Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geology Reviews, 107, 903–925. https://doi.org/10.1016/j.oregeorev.2019.03.005

    Article  Google Scholar 

  • Ota, R. R. M., & Martinez, L. A. T. (2017). SimSched Direct Block Scheduler: A new practical algorithm for the open pit mine production scheduling problem (Vol. 38, p. 8). Presented at the APCOM, Golden, CO USA.

    Google Scholar 

  • Pedersen, R. B., Rapp, H. T., Thorseth, I. H., Lilley, M. D., Barriga, F. J. A. S., Baumberger, T., et al. (2010a). Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nature Communications, 1(1), 126. https://doi.org/10.1038/ncomms1124

    Article  Google Scholar 

  • Pedersen, R. B., Thorseth, I. H., Nygård, T. E., Lilley, M. D., & Kelley, D. S. (2010b). Hydrothermal activity at the Arctic mid-ocean ridges. In P. A. Rona, C. W. Devey, J. Dyment, & B. J. Murton (Eds.), Geophysical Monograph Series (Vol. 188, pp. 67–89). Washington, D. C.: American Geophysical Union. https://doi.org/10.1029/2008GM000783

    Chapter  Google Scholar 

  • Pirajno, F. (2009). Hydrothermal Processes and Mineral Systems. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-8613-7

    Book  Google Scholar 

  • Rahmanpour, M., &Osanloo, M. (2014). Determining the Most Effective Factors on Open Pit Mine Plans and Their Interactions. In Mine Planning and Equipment Selection (pp. 25–35). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-02678-7

    Chapter  Google Scholar 

  • Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O. J., Furevik, B. R., &Bidlot, J.-R. (2011). A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. Journal of Geophysical Research, 116(C5), C05019. https://doi.org/10.1029/2010JC006402

    Article  Google Scholar 

  • Remy, N., Boucher, A., & Wu, J. (2021, February 24). SGeMS - Stanford Geostatistical Modeling Software. http://sgems.sourceforge.net/. Accessed 24 February 2021

  • Samavati, M., Essam, D., Nehring, M., &Sarker, R. (2017). A local branching heuristic for the open pit mine production scheduling problem. European Journal of Operational Research, 257(1), 261–271. https://doi.org/10.1016/j.ejor.2016.07.004

    Article  Google Scholar 

  • Sayadi, A. R., Fathianpor, N., & Mousavi, A. A. (2011). Open pit optimization in 3D using a new artificial neural network. Archives of Mining Sciences, 56(3), 389–403.

    Google Scholar 

  • Schlesinger, M. E., & Biswas, A. K. (Eds.). (2011). Extractive metallurgy of copper (5th ed.). Amsterdam; Boston: Elsevier.

    Google Scholar 

  • Seequent. (2021, February 24). Leapfrog 3D Geo. https://www.seequent.com/products-solutions/leapfrog-geo/. Accessed 24 February 2021

  • Singer, D. A. (2014). Base and precious metal resources in seafloor massive sulfide deposits. Ore Geology Reviews, 59, 66–72. https://doi.org/10.1016/j.oregeorev.2013.11.008

    Article  Google Scholar 

  • Snook, B., Drivenes, K., Rollinson, G. K., & Aasly, K. (2018). Characterisation of Mineralised Material from the Loki’s Castle Hydrothermal Vent on the Mohn’s Ridge. Minerals, 8(12), 576. https://doi.org/10.3390/min8120576

    Article  Google Scholar 

  • Snowdon, N. (2021, April). Copper: The path to record pricing.

    Google Scholar 

  • Souza, M. J. F., Coelho, I. M., Ribas, S., Santos, H. G., & Merschmann, L. H. C. (2010). A hybrid heuristic algorithm for the open-pit-mining operational planning problem. European Journal of Operational Research, 207(2), 1041–1051. https://doi.org/10.1016/j.ejor.2010.05.031

    Article  Google Scholar 

  • Souza, F. R., Burgarelli, H. R., Nader, A. S., Ortiz, C. E. A., Chaves, L. S., Carvalho, L. A., et al. (2018). Direct block scheduling technology: Analysis of Avidity. REM - International Engineering Journal, 71(1), 97–104. https://doi.org/10.1590/0370-44672017710129

    Article  Google Scholar 

  • Spagnoli, G., Rongau, J., Denegre, J., Miedema, S. A., & Weixler, L. (2016a). A Novel Mining Approach for Seafloor Massive Sulfide Deposits. In Day 2 Tue, May 03, 2016 (p. D021S028R002). Presented at the Offshore Technology Conference, Houston, Texas, USA: OTC. https://doi.org/10.4043/26870-MS

  • Spagnoli, Giovanni, Miedema, S. A., Herrmann, C., Rongau, J., Weixler, L., & Denegre, J. (2016b). Preliminary Design of a Trench Cutter System for Deep-Sea Mining Applications Under Hyperbaric Conditions. IEEE Journal of Oceanic Engineering, 41(4), 930–943. https://doi.org/10.1109/JOE.2015.2497884

    Article  Google Scholar 

  • Tenzer, R., &Gladkikh, V. (2014). Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths. The Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/823296

    Article  Google Scholar 

  • Wang, Y., Han, X., Zhou, Y., Qiu, Z., Yu, X., Petersen, S., et al. (2021). The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′N. Ore Geology Reviews, 129, 103888. https://doi.org/10.1016/j.oregeorev.2020.103888

    Article  Google Scholar 

  • Weixler, L. (2018, September 5). Discontinuous Ore Transport from the Deep Sea: Chances and Challenges. Presented at the NTNU Ocean Week, Trondheim.

    Google Scholar 

  • Wellmer, F.-W., Dalheimer, M., & Wagner, M. (2008). Economic evaluations in exploration (2nd ed.). Berlin; New York: Springer-Verlag.

    Google Scholar 

  • Wills, B., Finch, J., & Safari, O. M. C. (2015). Wills’ Mineral Processing Technology, 8th Edition. https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9780080970547/?ar. Accessed 4 May 2021

  • Yoshizumi, R., Miyoshi, Y., & Ishibashi, J. (2015). The Characteristics of the Seafloor Massive Sulfide Deposits at the Hakurei Site in the Izena Hole, the Middle Okinawa Trough. In J. Ishibashi, K. Okino, & M. Sunamura (Eds.), Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept (pp. 561–565). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-54865-2_43

    Chapter  Google Scholar 

Download references

Acknowledgments

Although only one author is listed, many researchers and co-workers have contributed with bits and pieces. I would therefore like to acknowledge Maxime Lesage for proofreading and for valuable discussions on the mining system and its characteristics, Kurt Aasly, Rolf Arne Kleiv, and Przemyslaw B. Kowalczuk for valuable discussions on mineralogical and textural characteristics and its link to processing performance and technologies, and Hakan Basarir for valuable contributions on overall slope stability. Last, but not at least, I would like to acknowledge Sebastian Volkmann and Micah Nehring for proofreading and discussions on various aspects of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steinar L. Ellefmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellefmo, S.L. (2022). Conceptual 3D Modeling and Direct Block Scheduling of a Massive Seafloor Sulfide Occurrence. In: Sharma, R. (eds) Perspectives on Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-87982-2_16

Download citation

Publish with us

Policies and ethics