Skip to main content

Muscle Health

  • Chapter
  • First Online:
New Horizons in Osteoporosis Management
  • 1536 Accesses

Abstract

From a theoretical standpoint, skeletal muscle is a primary driver of the relationship between body composition, bone health, and clinical outcomes, as it is involved in mobility, strength, and balance. However, while muscles play a vital role in human health at all stages of life, it is the health factor that is rarely talked about. Throughout life, the tissue masses of bone and muscle are tightly correlated. During organogenesis, muscle and bone develop in close association from common mesodermal precursors to determine adult muscle and bone mass. In addition, changes in muscle and bone mass brought about by exercise or disuse are also closely coupled. With age, loss of muscle mass is associated with loss of bone mass. Despite these obvious examples suggesting coupling of bone and muscle mass, the precise mechanisms responsible for synchronizing bone and skeletal mass remain unclear. This chapter discusses the evolution of muscle health as a key factor of the broad musculoskeletal health, and its important role in health and healthy aging. It combines the basic, yet up to date, information about muscle health, the muscle bone interaction, together with discussions on the muscle health in aging and disease and approaches to management of muscle loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frontera W, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2014; https://doi.org/10.1007/s00223-014-9915-y.

  2. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475–82.

    CAS  PubMed  Google Scholar 

  3. Cahill GF Jr. Starvation in man. N Engl J Med. 1970;282:668–75.

    CAS  PubMed  Google Scholar 

  4. Felig P, Owen OE, Wahren J. Amino acid metabolism during prolonged starvation. J Clin Invest. 1969;48:584–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Biolo G, Zhang X-J, Wolfe RR. Role of membrane transport in inter-organ amino acid flow between muscle and small intestine. Metabolism. 1995;44:719–24.

    CAS  PubMed  Google Scholar 

  6. Felig P. The glucose-alanine cycle. Metabolism. 1973;22:179–88.

    CAS  PubMed  Google Scholar 

  7. Wolfe RR, Alsop JR, Burke JF. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism. 1979;28:210–20.

    CAS  PubMed  Google Scholar 

  8. Drenick EJ, Swendseid ME, Bland WH, Tuttle SG. Prolonged starvation as treatment for severe obesity. JAMA. 1964;87:100–5.

    Google Scholar 

  9. Kotler DP, Tierney AR, Wang J. The magnitude of body cell mass depletion determines the timing of death from wasting in AIDS. Am J Clin Nutr. 1989;50:444–7.

    CAS  PubMed  Google Scholar 

  10. Winick M. Hunger disease. Studies by the Jewish physicians in the Warsaw Ghetto. New York: Wiley; 1979. p. 115–23.

    Google Scholar 

  11. Keys A, Brozek J, Henshel A, Mickelsen O, Longstreet TH. The biology of human starvation. Minneapolis: University of Minnesota Press; 1950.

    Google Scholar 

  12. Kuriyan R, Thomas T, Ashok S, Jayakumar J, Kurpad AV. A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique & bio-electrical impedance for measuring body fat in Indian adults. Indian J Med Res. 2014;139:700–7.

    PubMed  PubMed Central  Google Scholar 

  13. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89:81–8.

    CAS  Google Scholar 

  14. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dualenergy X-ray absorptiometry method. Am J Clin Nutr. 2002;76:378–83.

    CAS  PubMed  Google Scholar 

  15. Dittmar M, Reber H. New equations for estimating body cell mass from bioimpedance parallel models in healthy older Germans. Am J Physiol Endocrinol Metab. 2001;281:E1005–14.

    CAS  PubMed  Google Scholar 

  16. Fanny Buckinx, Francesco Landi, Matteo Cesari, Roger A. Fielding, , Marjolein Visser, Klaus Engelke et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 2018; 9(2):269–278.

    PubMed  PubMed Central  Google Scholar 

  17. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39:412–23.

    PubMed  PubMed Central  Google Scholar 

  18. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–58.

    PubMed  PubMed Central  Google Scholar 

  19. Pradoa C, Purcella S, Alishb C, Pereirab S, Deutzc N, Heylandd D, Goodpastere B, Tappendenf K, Heymsfieldg S. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018; https://doi.org/10.1080/07853890.2018.1511918.

  20. Kaji H. Interaction between muscle and bone. J Bone Metab. 2014;21:29–40.

    PubMed  PubMed Central  Google Scholar 

  21. Ong T, Sahota O, Tan W, et al. A United Kingdom perspective on the relationship between body mass index (BMI) and bone health: a cross sectional analysis of data from the Nottingham Fracture Liaison Service. Bone. 2014;59:207–10.

    PubMed  Google Scholar 

  22. Verschueren S, Gielen E, O’Neill TW, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24:87–98.

    CAS  PubMed  Google Scholar 

  23. Ducher G, Bass SL, Saxon L, et al. Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: a 12-month study in pre/peri- and postmenarcheal tennis players. J Bone Miner Res. 2011;26:1321–9.

    PubMed  Google Scholar 

  24. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res. 2012;27:1–10.

    PubMed  Google Scholar 

  25. Nielson CM, Marshall LM, Adams AL, et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26:496–502.

    PubMed  Google Scholar 

  26. Johannesdottir F, Aspelund T, Siggeirsdottir K, et al. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik study). Calcif Tissue Int. 2012;90:354–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaji H. Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care. 2013;16:272–7.

    PubMed  Google Scholar 

  28. Cooper C, Dere W, Evans W, et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int. 2012;23:1839–48.

    CAS  PubMed  Google Scholar 

  29. Rikkonen T, Sirola J, Salovaara K, et al. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91:131–8.

    CAS  PubMed  Google Scholar 

  30. Shah K, Armamento-Villareal R, Parimi N, et al. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res. 2011;26:2851–9.

    CAS  PubMed  Google Scholar 

  31. Armamento-Villareal R, Sadler C, Napoli N, et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res. 2012;27:1215–21.

    CAS  PubMed  Google Scholar 

  32. Sornay-Rendu E, Karras-Guillibert C, Munoz F, et al. Age determines longitudinal changes in body composition better than menopausal and bone status: the OFELY study. J Bone Miner Res. 2012;27:628–36.

    PubMed  Google Scholar 

  33. Wey HE, Binkley TL, Beare TM, et al. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab. 2011;96:106–14.

    CAS  PubMed  Google Scholar 

  34. Reyes ML, Hernández M, Holmgren LJ, et al. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res. 2011;26:1759–66.

    PubMed  Google Scholar 

  35. Szulc P, Blaizot S, Boutroy S, et al. Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J Bone Miner Res. 2013;28:169–78.

    PubMed  Google Scholar 

  36. Bonewald LF, Kiel DP, Clemens TL, et al. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2013;28:1857–65.

    PubMed  Google Scholar 

  37. Sharir A, Stern T, Rot C, et al. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138:3247–59.

    CAS  PubMed  Google Scholar 

  38. Karasik D, Kiel DP. Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res. 2008;23:788–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bogl LH, Latvala A, Kaprio J, et al. An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res. 2011;26:79–87.

    PubMed  Google Scholar 

  40. Karasik D, Cohen-Zinder M. The genetic pleiotropy of musculoskeletal aging. Front Physiol. 2012;3:303.

    PubMed  PubMed Central  Google Scholar 

  41. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    CAS  PubMed  Google Scholar 

  42. Autier P, Gandini S, Mullie P. A systematic review: influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. J Clin Endocrinol Metab. 2012;97:2606–13.

    CAS  PubMed  Google Scholar 

  43. Nurmi-Lüthje I, Sund R, Juntunen M, et al. Post-hip fracture use of prescribed calcium plus vitamin D or vitamin D supplements and antiosteoporotic drugs is associated with lower mortality: a nationwide study in Finland. J Bone Miner Res. 2011;26:1845–53.

    PubMed  Google Scholar 

  44. Rejnmark L, Avenell A, Masud T, et al. Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab. 2012;97:2670–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Glendenning P, Zhu K, Inderjeeth C, et al. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. J Bone Miner Res. 2012;27:170–6.

    CAS  PubMed  Google Scholar 

  46. Marantes I, Achenbach SJ, Atkinson EJ, et al. Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res. 2011;26:2860–71.

    CAS  PubMed  Google Scholar 

  47. Garcia LA, King KK, Ferrini MG, et al. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152:2976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldspink G. Age-related loss of muscle mass and strength. J Aging Res. 2012;2012:158279.

    PubMed  PubMed Central  Google Scholar 

  49. Terracciano C, Celi M, Lecce D, et al. Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos Int. 2013;24:1095–100.

    CAS  PubMed  Google Scholar 

  50. Van Caenegem E, Wierckx K, Taes Y, et al. Bone mass, bone geometry, and body composition in female-to-male transsexual persons after long-term cross-sex hormonal therapy. J Clin Endocrinol Metab. 2012;97:2503–11.

    PubMed  Google Scholar 

  51. Birzniece V, Meinhardt UJ, Gibney J, et al. Differential effects of raloxifene and estrogen on body composition in growth hormone-replaced hypopituitary women. J Clin Endocrinol Metab. 2012;97:1005–12.

    CAS  PubMed  Google Scholar 

  52. Lebrasseur NK, Achenbach SJ, Melton LJ 3rd, et al. Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res. 2012;27:2159–69.

    CAS  PubMed  Google Scholar 

  53. Lang TF. The bone-muscle relationship in men and women. J Osteoporos. 2011;2011:702735.

    PubMed  PubMed Central  Google Scholar 

  54. Rariy CM, Ratcliffe SJ, Weinstein R, et al. Higher serum free testosterone concentration in older women is associated with greater bone mineral density, lean body mass, and total fat mass: the cardiovascular health study. J Clin Endocrinol Metab. 2011;96:989–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaji H, Tobimatsu T, Naito J, et al. Body composition and vertebral fracture risk in female patients treated with glu cocorticoid. Osteoporos Int. 2006;17:627–33.

    CAS  PubMed  Google Scholar 

  56. Skversky AL, Kumar J, Abramowitz MK, et al. Association of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J Clin Endocrinol Metab. 2011;96:3838–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Butner KL, Creamer KW, Nickols-Richardson SM, et al. Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. J Clin Densitom. 2012;15:355–61.

    PubMed  Google Scholar 

  58. Schwartz AV, Johnson KC, Kahn SE, et al. Effect of 1 year of an intentional weight loss intervention on bone mineral density in type 2 diabetes: results from the Look AHEAD randomized trial. J Bone Miner Res. 2012;27:619–27.

    PubMed  Google Scholar 

  59. Wood RJ, O’Neill EC. Resistance training in type II diabetes mellitus: impact on areas of metabolic dysfunction in skeletal muscle and potential impact on bone. J Nutr Metab. 2012;2012:268197.

    PubMed  PubMed Central  Google Scholar 

  60. Keyak JH, Koyama AK, LeBlanc A, et al. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.

    CAS  PubMed  Google Scholar 

  61. Colnot C, Zhang X, Knothe Tate ML. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res. 2012;30:1869–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Evans SF, Parent JB, Lasko CE, et al. Periosteum, bone’s “smart” bounding membrane, exhibits direction-dependent permeability. J Bone Miner Res. 2013;28:608–17.

    PubMed  Google Scholar 

  63. Henrotin Y. Muscle: a source of progenitor cells for bone fracture healing. BMC Med. 2011;9:136.

    PubMed  PubMed Central  Google Scholar 

  64. Glass GE, Chan JK, Freidin A, et al. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A. 2011;108:1585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hisa I, Kawara A, Katagiri T, et al. Effects of serum from a fibrodysplasia ossificans progressiva patient on osteoblastic cells. Open J Endocr Metab Dis. 2012;2:1–6.

    Google Scholar 

  66. Whyte MP, Wenkert D, Demertzis JL, et al. Fibrodysplasia ossificans progressiva: middle-age onset of heterotopic ossification from a unique missense mutation (c.974G>C, p.G325A) in ACVR1. J Bone Miner Res. 2012;27:729–37.

    CAS  PubMed  Google Scholar 

  67. Leblanc E, Trensz F, Haroun S, et al. BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. J Bone Miner Res. 2011;26:1166–77.

    CAS  PubMed  Google Scholar 

  68. Shi S, de Gorter DJ, Hoogaars WM, et al. Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci. 2013;70:407–23.

    CAS  PubMed  Google Scholar 

  69. Tanaka K, Inoue Y, Hendy GN, et al. Interaction of Tmem119 and the bone morphogenetic protein pathway in the commitment of myoblastic into osteoblastic cells. Bone. 2012;51:158–67.

    CAS  PubMed  Google Scholar 

  70. Hisa I, Inoue Y, Hendy GN, et al. Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway. J Biol Chem. 2011;286:9787–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanaka K, Matsumoto E, Higashimaki Y, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem. 2012;287:11616–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanaka K, Matsumoto E, Higashimaki Y, et al. FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem Biophys Res Commun. 2012;418:134–9.

    CAS  PubMed  Google Scholar 

  73. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2013; https://doi.org/10.1007/s12020-013-0026-8.

  74. Zhang J, Cheng J, Tu Q, et al. Effects of irisin on bone metabolism and its signal mechanism. In: ASBMR 2013 annual meeting; 2013 October 4–7; Baltimore Convention Center. Baltimore: American Society for Bone and Mineral Research.

    Google Scholar 

  75. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    PubMed  PubMed Central  Google Scholar 

  76. Arounleut P, Bialek P, Elsalanty M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass but does not alter bone density or strength in aged mice. In: ASBMR 2013 annual meeting; 2013 October 4–7; Baltimore Convention Center. Baltimore: American Society for Bone and Mineral Research.

    Google Scholar 

  77. Sassoli C, Pini A, Chellini F, et al. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS One. 2012;7:e37512.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jähn K, Lara-Castillo N, Brotto L, et al. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur Cell Mater. 2012;24:197–209.

    PubMed  PubMed Central  Google Scholar 

  79. Rodgers BD, Garikipati DK. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev. 2008;29:513–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abreu EL, Stern M, Brotto M. Bone-muscle interactions: ASBMR topical meeting, July 2012. IBMS BoneKey. 2012;9:239.

    Google Scholar 

  81. Juffer P, Jaspers RT, Lips P, et al. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab. 2012;302:E389–95.

    CAS  PubMed  Google Scholar 

  82. Mo C, Romero-Suarez S, Bonewald L, et al. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol. 2012;6:223–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gorski J, Huffman NT, Brotto L, et al. Potential role of leptin and BMP2 in osteocyte regulation of muscle mass and function in the adult skeleton and with age. In: ASBMR 2013 annual meeting; 2013 October 4–7; Baltimore Convention Center. Baltimore: American Society for Bone and Mineral Research.

    Google Scholar 

  84. Lustgarten MS, Fielding RA. Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Health Aging. 2011;15:368–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mijnarends DM, Meijers JM, Halfens RJ, ter Borg S, Luiking YC, Verlaan S, Schoberer D, Cruz Jentoft AJ, van Loon LJ, Schols JM. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc. 2013;14:170–8.

    PubMed  Google Scholar 

  86. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc. 2015;74:355–66.

    PubMed  Google Scholar 

  87. Erlandson MC, Lorbergs AL, Mathur S, Cheung AM. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol. 2016;85:1505–11.

    CAS  PubMed  Google Scholar 

  88. Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med. 1997;27:210–28.

    CAS  PubMed  Google Scholar 

  89. Quantitative aspects of bone densitometry: contents. J ICRU. 2009; 9:Np.

    Google Scholar 

  90. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Phys. 1996;271:E941–51.

    CAS  Google Scholar 

  91. Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact. 2013;13:320–8.

    CAS  PubMed  Google Scholar 

  92. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle. 2014;5:9–18.

    PubMed  PubMed Central  Google Scholar 

  93. Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, aging, and body composition study – dual energy X-ray absorptiometry and body composition working group. J Appl Physiol (1985). 1999;87:1513–20.

    CAS  Google Scholar 

  94. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra M, Klibanski A, Miller KK. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring). 2010;18:2227–33.

    Google Scholar 

  95. Bilsborough JC, Greenway K, Opar D, Livingstone S, Cordy J, Coutts AJ. The accuracy and precision of DXA for assessing body composition in team sport athletes. J Sports Sci. 2014;32:1821–8.

    PubMed  Google Scholar 

  96. Carver TE, Christou NV, Andersen RE. In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring). 2013;21:1367–9.

    Google Scholar 

  97. Hind K, Oldroyd B. In-vivo precision of the GE Lunar iDXA densitometer for the measurement of appendicular and trunk lean and fat mass. Eur J Clin Nutr. 2013;67:1331–3.

    CAS  PubMed  Google Scholar 

  98. Knapp KM, Welsman JR, Hopkins SJ, Shallcross A, Fogelman I, Blake GM. Obesity increases precision errors in total body dual-energy x-ray absorptiometry measurements. J Clin Densitom. 2015;18:209–16.

    PubMed  Google Scholar 

  99. Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring). 2012;20:30–9.

    Google Scholar 

  100. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual-energy Xray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16:520–36.

    PubMed  Google Scholar 

  101. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20:2707–14.

    PubMed  PubMed Central  Google Scholar 

  102. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014;38:940–53.

    PubMed  PubMed Central  Google Scholar 

  103. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17:1281–6.

    Google Scholar 

  104. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C. Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res. 1994;9:1503–14.

    CAS  PubMed  Google Scholar 

  105. Hull H, He Q, Thornton J, Javed F, Allen L, Wang J, Pierson RN Jr, Gallagher D. iDXA, prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: a cross-calibration study. J Clin Densitom. 2009;12:95–102.

    PubMed  Google Scholar 

  106. Saarelainen J, Hakulinen M, Rikkonen T, Kroger H, Tuppurainen M, Koivumaa-Honkanen H, Honkanen R, Hujo M, Jurvelin JS. Cross-calibration of GE healthcare lunar prodigy and iDXA dual-energy X-ray densitometers for bone mineral measurements. J Osteoporos. 2016;2016:1424582.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Snyder WSC, Cook MJ, Nasset ES, Karhansen LR, Howells GP, Tipton IH. Report of the task group on reference men. Oxford: Pergamon Press; 1975.

    Google Scholar 

  108. Daguet E, Jolivet E, Bousson V, Boutron C, Dahmen N, Bergot C, Vicaut E, Laredo JD. Fat content of hip muscles: an anteroposterior gradient. J Bone Joint Surg Am. 2011;93:1897–905.

    PubMed  Google Scholar 

  109. Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia. 2000;2:62–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Strandberg S, Wretling ML, Wredmark T, Shalabi A. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imaging. 2010;10:18.

    PubMed  PubMed Central  Google Scholar 

  111. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:527–58.

    CAS  PubMed  Google Scholar 

  112. Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol (1985). 1996;81:2445–55.

    CAS  Google Scholar 

  113. Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27:531–4.

    CAS  PubMed  Google Scholar 

  114. Nyboer J. Workable volume and flow concepts of bio-segments by electrical impedance plethysmography. 1972. Nutrition. 1991;7:396–408, discussion 409

    CAS  PubMed  Google Scholar 

  115. Thomasset A. Bioelectrical properties of tissue impedance measurements. Lyon Med. 1962;94:107–18.

    CAS  PubMed  Google Scholar 

  116. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel). 2014;14:10895–928.

    Google Scholar 

  117. Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyere O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:60.

    PubMed  PubMed Central  Google Scholar 

  118. Bioelectrical impedance analysis in body composition measurement: national institutes of health technology assessment conference statement. Am J Clin Nutr. 1996;64:524s–32s.

    Google Scholar 

  119. Sergi G, Coin A, Marin S, Vianello A, Manzan A, Peruzza S, Inelmen EM, Busetto L, Mulone S, Enzi G. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease. Respir Med. 2006;100:1918–24.

    PubMed  Google Scholar 

  120. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, Maier AB. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30:610–5.

    PubMed  Google Scholar 

  121. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol (1985). 2014;116:1605–13.

    CAS  Google Scholar 

  122. Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr. 1975;105:428–38.

    CAS  PubMed  Google Scholar 

  123. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr. 1983;37:478–94.

    CAS  PubMed  Google Scholar 

  124. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    CAS  PubMed  Google Scholar 

  125. Li J, Spieker AJ, Rosen GD, Rutkove SB. Electrical impedance alterations in the rat hind limb with unloading. J Musculoskelet Neuronal Interact. 2013;13:37–44.

    CAS  PubMed  Google Scholar 

  126. Tarulli AW, Duggal N, Esper GJ, Garmirian LP, Fogerson PM, Lin CH, Rutkove SB. Electrical impedance myography in the assessment of disuse atrophy. Arch Phys Med Rehabil. 2009;90:1806–10.

    PubMed  PubMed Central  Google Scholar 

  127. Rutkove SB. Electrical impedance myography: background, current state, and future directions. Muscle Nerve. 2009;40:936–46.

    PubMed  PubMed Central  Google Scholar 

  128. Stevens DE, Smith CB, Harwood B, Rice CL. In vivo measurement of fascicle length and pennation of the human anconeus muscle at several elbow joint angles. J Anat. 2014;225:502–9.

    PubMed  PubMed Central  Google Scholar 

  129. Thomaes T, Thomis M, Onkelinx S, Coudyzer W, Cornelissen V, Vanhees L. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients. BMC Med Imaging. 2012;12:7.

    PubMed  PubMed Central  Google Scholar 

  130. Ismail C, Zabal J, Hernandez HJ, Woletz P, Manning H, Teixeira C, DiPietro L, Blackman MR, Harris-Love MO. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front Physiol. 2015;6:302.

    PubMed  PubMed Central  Google Scholar 

  131. Menon MK, Houchen L, Harrison S, Singh SJ, Morgan MD, Steiner MC. Ultrasound assessment of lower limb muscle mass in response to resistance training in COPD. Respir Res. 2012;13:119.

    PubMed  PubMed Central  Google Scholar 

  132. Mueller N, Murthy S, Tainter CR, Lee J, Riddell K, Fintelmann FJ, Grabitz SD, Timm FP, Levi B, Kurth T, Eikermann M. Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients as well as frailty? A prospective, observational cohort study. Ann Surg. 2016;264:1116–24.

    PubMed  Google Scholar 

  133. Nedergaard A, Dalgas U, Primdahl H, Johansen J, Overgaard J, Overgaard K, Henriksen K, Karsdal MA, Lonbro S. Collagen fragment biomarkers as serological biomarkers of lean body mass – a biomarker pilot study from the DAHANCA25B cohort and matched controls. J Cachexia Sarcopenia Muscle. 2015;6:335–42.

    PubMed  PubMed Central  Google Scholar 

  134. Nedergaard A, Sun S, Karsdal MA, Henriksen K, Kjaer M, Lou Y, He Y, Zheng Q, Suetta C. Type VI collagen turnover related peptides-novel serological biomarkers of muscle mass and anabolic response to loading in young men. J Cachexia Sarcopenia Muscle. 2013;4:267–75.

    PubMed  PubMed Central  Google Scholar 

  135. Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun. 2013;4:1964.

    PubMed  Google Scholar 

  136. Sabatelli P, Gualandi F, Gara SK, Grumati P, Zamparelli A, Martoni E, Pellegrini C, Merlini L, Ferlini A, Bonaldo P, et al. Expression of collagen VI alpha5 and alpha6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol. 2012;31:187–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, Parnell LD, Fielding RA. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014;28:4133–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a “gold standard”. Am J Clin Nutr. 1993;58:589–91.

    CAS  PubMed  Google Scholar 

  139. Stewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J, Brown R, Beadle J, Anker SD. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J Cachexia Sarcopenia Muscle. 2016;7:355–65.

    PubMed  PubMed Central  Google Scholar 

  140. van de Bool C, Rutten EPA, van Helvoort A, Franssen FME, Wouters EFM, Schols A. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J Cachexia Sarcopenia Muscle. 2017;8:748–58.

    PubMed  PubMed Central  Google Scholar 

  141. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double blind, phase 3 trials. Lancet Oncol. 2016;17:519–31.

    CAS  PubMed  Google Scholar 

  142. Technical standardization for dual-energy x-ray absorptiometry. J Clin Densitom. 2004;7:27–36.

    Google Scholar 

  143. Kanis JA, Adachi JD, Cooper C, Clark P, Cummings SR, Diaz-Curiel M, Harvey N, Hiligsmann M, Papaioannou A, Pierroz DD, et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int. 2013;24:2763–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index adjusted models in assessing sarcopenia. Korean J Intern Med. 2016;31:643–50.

    PubMed  PubMed Central  Google Scholar 

  145. Merriwether EN, Host HH, Sinacore DR. Sarcopenic indices in community-dwelling older adults. J Geriatr Phys Ther. 2012;35:118–25.

    PubMed  PubMed Central  Google Scholar 

  146. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159:413–21.

    PubMed  Google Scholar 

  147. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96.

    PubMed  Google Scholar 

  148. Phillips SM, Chevalier S, Leidy HJ. Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 2016;41:565–72.

    CAS  PubMed  Google Scholar 

  149. Lonnie M, Hooker E, Brunstrom JM, Corfe BM, Green MA, Watson AW, Williams EA, Stevenson EJ, Penson S, Johnstone AM. Protein for life: review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients. 2018;10:360.

    PubMed Central  Google Scholar 

  150. Traylor DA, Gorissen SHM, Phillips SM. Perspective: protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance? Adv Nutr. 2018;9:171–82.

    PubMed  PubMed Central  Google Scholar 

  151. Mithal A, Bonjour J-P, Boonen S, Burckhardt P, Degens H, Fuleihan GEH, Josse R, Lips P, Torres JM, Rizzoli R, Yoshimura N, Wahl DA, Cooper C, Dawson-Hughes B, For the IOF CSA Nutrition Working Group. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24:1555–66.

    CAS  PubMed  Google Scholar 

  152. Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003;77:109–27.

    CAS  PubMed  Google Scholar 

  153. Wolfe RR. Protein summit: consensus areas and future research. Am J Clin Nutr. 2008;87:1582S–3S.

    CAS  PubMed  Google Scholar 

  154. Rodriguez NR, Garlick PJ. Introduction to protein summit 2007: exploring the impact of high-quality protein on optimal health. Am J Clin Nutr. 2008;87:1551S–3S.

    CAS  PubMed  Google Scholar 

  155. Martin WF, Armstrong LE, Rodriguez NR. Dietary protein intake and renal function. Nutr Metab (Lond). 2005;2:25.

    Google Scholar 

  156. Kovesdy CP, Kalantar-Zadeh K. Why is protein-energy wasting associated with mortality in chronic kidney disease? Semin Nephrol. 2009;29:3–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gaffney-Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people. For optimal muscle and bone health. J Am Geriatr Soc. 2009;57:1073–9.

    PubMed  Google Scholar 

  158. Ceglia L. Vitamin D and skeletal muscle function. In: Feldman D, Wesley Pike J, Adams JS, editors. Vitamin D. London: Academic; 2011. p. 2023–42.

    Google Scholar 

  159. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19:265–9.

    CAS  PubMed  Google Scholar 

  160. Wang Y, DeLuca HF. Is the vitamin d receptor found in muscle? Endocrinology. 2011;152:354–63.

    CAS  PubMed  Google Scholar 

  161. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152:2976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Annweiler C, Montero-Odasso M, Schott AM, Berrut G, Fantino B, Beauchet O. Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. J Neuroeng Rehabil. 2010;7:50.

    PubMed  PubMed Central  Google Scholar 

  163. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or 060 y. Am J Clin Nutr. 2004;80:752–8.

    CAS  PubMed  Google Scholar 

  164. Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P. Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab. 2007;92:2058–65.

    CAS  PubMed  Google Scholar 

  165. Dam TT, von Muhlen D, Barrett-Connor EL. Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporos Int. 2009;20:751–60.

    CAS  PubMed  Google Scholar 

  166. Gerdhem P, Ivaska KK, Isaksson A, Pettersson K, Vaananen HK, Obrant KJ, Akesson K. Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women. J Bone Miner Res. 2007;22:127–34.

    CAS  PubMed  Google Scholar 

  167. Foo LH, Zhang Q, Zhu K, Ma G, Hu X, Greenfield H, Fraser DR. Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr. 2009;139:1002–7.

    CAS  PubMed  Google Scholar 

  168. Ward KA, Das G, Berry JL, Roberts SA, Rawer R, Adams JE, Mughal Z. Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab. 2009;94:559–63.

    CAS  PubMed  Google Scholar 

  169. Pfeifer M, Begerow B, Minne HW, Schlotthauer T, Pospeschill M, Scholz M, Lazarescu AD, Pollahne W. Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Exp Clin Endocrinol Diabetes. 2001;109:87–92.

    CAS  PubMed  Google Scholar 

  170. Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P. Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab. 2009;94:1244–50.

    PubMed  Google Scholar 

  171. Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, Boonen S. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res. 2011;26:42–9.

    CAS  PubMed  Google Scholar 

  172. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20:315–22.

    CAS  PubMed  Google Scholar 

  173. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB. Effect of vitamin D on falls: a meta-analysis. JAMA. 2004;291:1999–2006.

    CAS  PubMed  Google Scholar 

  174. Sorensen OH, Lund B, Saltin B, Andersen RB, Hjorth L, Melsen F, Mosekilde L. Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond). 1979;56:157–61.

    CAS  Google Scholar 

  175. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20:187–92.

    CAS  PubMed  Google Scholar 

  176. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350:2042–9.

    CAS  PubMed  Google Scholar 

  177. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350:2033–41.

    PubMed  Google Scholar 

  178. Kado DM, Bucur A, Selhub J, Rowe JW, Seeman T. Homocysteine levels and decline in physical function: MacArthur studies of successful aging. Am J Med. 2002;113:537–42.

    CAS  PubMed  Google Scholar 

  179. Kuo HK, Liao KC, Leveille SG, Bean JF, Yen CJ, Chen JH, Yu YH, Tai TY. Relationship of homocysteine levels to quadriceps strength, gait speed, and late-life disability in older adults. J Gerontol A Biol Sci Med Sci. 2007;62:434–9.

    PubMed  Google Scholar 

  180. McDermott MM, Ferrucci L, Guralnik JM, et al. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol. 2007;50:897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA. 2005;293:1082–8.

    CAS  PubMed  Google Scholar 

  182. Frassetto LA, Morris RC Jr, Sebastian A. Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Phys. 1996;271:F1114–22.

    CAS  Google Scholar 

  183. Green J, Kleeman CR. Role of bone in regulation of systemic acid-base balance. Kidney Int. 1991;39:9–26.

    CAS  PubMed  Google Scholar 

  184. Askanazi J, Carpentier YA, Michelsen CB, Elwyn DH, Furst P, Kantrowitz LR, Gump FE, Kinney JM. Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg. 1980;192:78–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Aulick LH, Wilmore DW. Increased peripheral amino acid release following burn injury. Surgery. 1979;85:560–5.

    CAS  PubMed  Google Scholar 

  186. Souba WW, Smith RJ, Wilmore DW. Glutamine metabolism by the intestinal tract. JPEN J Parenter Enter Nutr. 1985;9:608–17.

    CAS  Google Scholar 

  187. Williamson DH. Muscle protein degradation and amino acid metabolism in human injury. Biochem Soc Trans. 1980;8:497.

    CAS  PubMed  Google Scholar 

  188. Garibotto G, Deferrari G, Robaudo C, Saffioti S, Sofia A, Russo R, Tizianello A. Disposal of exogenous amino acids by muscle in patients with chronic renal failure. Am J Clin Nutr. 1995;62:136–42.

    CAS  PubMed  Google Scholar 

  189. Vazquez JA, Adibi SA. Protein sparing during treatment of obesity: ketogenic versus nonketogenic very low calorie diet. Metabolism. 1992;41:406–14.

    CAS  PubMed  Google Scholar 

  190. Papadoyannakis NJ, Stefanidis CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40:623–7.

    CAS  PubMed  Google Scholar 

  191. Gougeon-Reyburn R, Lariviere F, Marliss EB. Effects of bicarbonate supplementation on urinary mineral excretion during very low energy diets. Am J Med Sci. 1991;302:67–74.

    CAS  PubMed  Google Scholar 

  192. Williams B, Layward E, Walls J. Skeletal muscle degradation and nitrogen wasting in rats with chronic metabolic acidosis. Clin Sci (Lond). 1991;80:457–62.

    CAS  Google Scholar 

  193. May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid dependent mechanism. J Clin Invest. 1986;77:614–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Owen EE, Robinson RR. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963;42:263–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Price SR, Du JD, Bailey JL, Mitch WE. Molecular mechanisms regulating protein turnover in muscle. Am J Kidney Dis. 2001;37:S112–4.

    CAS  PubMed  Google Scholar 

  196. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95:39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008;87:662–5.

    CAS  PubMed  Google Scholar 

  198. Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab. 2009;94:645–53.

    CAS  PubMed  Google Scholar 

  199. Dawson-Hughes B, Harris SS, Palermo NJ, Castaneda-Sceppa C, Rasmussen HM, Dallal GE. Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. J Clin Endocrinol Metab. 2009;94:96–102.

    CAS  PubMed  Google Scholar 

  200. Frassetto L, Morris RC Jr, Sebastian A. Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab. 1997;82:254–9.

    CAS  PubMed  Google Scholar 

  201. Vieth R, Fraser D. Kinetic behavior of 25-hydroxyvitamin D-1-hydroxylase and −24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1979;254:12455–60.

    CAS  PubMed  Google Scholar 

  202. Langman CB, Bushinsky DA, Favus MJ, Coe FL. Ca and P regulation of 1,25(OH)2D3 synthesis by vitamin D-replete rat tubules during acidosis. Am J Phys. 1986;251:F911–8.

    CAS  Google Scholar 

  203. Krapf R, Vetsch R, Vetsch W, Hulter HN. Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia. J Clin Invest. 1992;90:2456–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Mizwicki MT, Bishop JE, Norman AW. Applications of the vitamin D sterol-vitamin D receptor (VDR) conformational ensemble model. Steroids. 2005;70:464–71.

    CAS  PubMed  Google Scholar 

  205. Hulter HN. Effects and interrelationships of PTH, Ca2+, vitamin D, and Pi in acid-base homeostasis. Am J Phys. 1985;248:F739–52.

    CAS  Google Scholar 

  206. Hulter HN, Halloran BP, Toto RD, Peterson JC. Long-term control of plasma calcitriol concentration in dogs and humans. Dominant role of plasma calcium concentration in experimental hyperparathyroidism. J Clin Invest. 1985;76:695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Dawson-Hughes B, Castaneda-Sceppa C, Harris SS, Palermo NJ, Cloutier G, Ceglia L, Dallal GE. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos Int. 2010;21:1171–9.

    CAS  PubMed  Google Scholar 

  208. Roth DA, Brooks GA. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys. 1990;279:386–94.

    CAS  PubMed  Google Scholar 

  209. Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol. 1985;63:403–16.

    CAS  PubMed  Google Scholar 

  210. Verbitsky O, Mizrahi J, Levin M, Isakov E. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol. 1997;83:333–7.

    CAS  PubMed  Google Scholar 

  211. Price M, Moss P, Rance S. Effects of sodium bicarbonate ingestion on prolonged intermittent exercise. Med Sci Sports Exerc. 2003;35:1303–8.

    CAS  PubMed  Google Scholar 

  212. Horswill CA, Costill DL, Fink WJ, Flynn MG, Kirwan JP, Mitchell JB, Houmard JA. Influence of sodium bicarbonate on sprint performance: relationship to dosage. Med Sci Sports Exerc. 1988;20:566–9.

    CAS  PubMed  Google Scholar 

  213. McCartney N, Heigenhauser GJ, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol. 1983;55:225–9.

    CAS  PubMed  Google Scholar 

  214. Webster MJ, Webster MN, Crawford RE, Gladden LB. Effect of sodium bicarbonate ingestion on exhaustive resistance exercise performance. Med Sci Sports Exerc. 1993;25:960–5.

    CAS  PubMed  Google Scholar 

  215. Lee WS, Cheung WH, Qin L, Tang N, Leung KS. Age-associated decrease of type iia/b human skeletal muscle fibres. Clin Orthop Relat Res. 2006;450:231–7.

    PubMed  Google Scholar 

  216. Rogers MA, Evans WJ. Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev. 1993;21:65–102.

    CAS  PubMed  Google Scholar 

  217. Wagner KH, Cameron-Smith D, Wessner B, Franzke B. Biomarkers of aging: from function to molecular biology. Nutrients. 2016;8:338.

    PubMed Central  Google Scholar 

  218. Song Z, von Figura G, Liu Y, Kraus JM, Torrice C, Dillon P, Rudolph-Watabe M, Ju Z, Kestler HA, Sanoff H, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9:607–15.

    CAS  PubMed  Google Scholar 

  219. Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, Magbanua MJ, Marlin R, Yglecias L, Carroll PR, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.

    CAS  PubMed  Google Scholar 

  220. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J. Physiol. 2016;594:2001–24.

    CAS  PubMed  Google Scholar 

  221. Smoliner C, Norman K, Wagner KH, Hartig W, Lochs H, Pirlich M. Malnutrition and depression in the institutionalised elderly. Br J Nutr. 2009;102:1663–7.

    CAS  PubMed  Google Scholar 

  222. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross sectional study of muscle strength and mass in 45- to 78-year old men and women. J Appl Physiol (1985). 1991;71:644–50.

    CAS  Google Scholar 

  223. Gallagher D, Visser M, De Meersman RE, Sepulveda D, Baumgartner RN, Pierson RN, Harris T, Heymsfield SB. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985). 1997;83:229–39.

    CAS  Google Scholar 

  224. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.

    CAS  PubMed  Google Scholar 

  225. Janssen I, Heymsfield SB, Wang ZM. Ross R (2000) skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 1985;89:81–8.

    Google Scholar 

  226. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol Respir Environ Exerc Physiol. 1979;46:451–6.

    CAS  PubMed  Google Scholar 

  227. Clarkson PM, Kroll W, Melchionda AM. Age, isometric strength, rate of tension development and fiber type composition. J Gerontol. 1981;36:648–53.

    CAS  PubMed  Google Scholar 

  228. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63:829–34.

    PubMed  Google Scholar 

  229. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67:28–40.

    PubMed  Google Scholar 

  230. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25:17–25.

    CAS  PubMed  Google Scholar 

  231. Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, Mcphee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age related motor unit remodeling. Physiol Rep. 2016;4(19):e12987.

    PubMed  PubMed Central  Google Scholar 

  232. Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594:4525–36.

    CAS  PubMed  Google Scholar 

  233. Kamen G, Sison SV, Du CC, Patten C. Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol (1985). 1995;79:1908–13.

    CAS  Google Scholar 

  234. Christou EA. Aging and variability of voluntary contractions. Exerc Sport Sci Rev. 2011;39:77–84.

    PubMed  PubMed Central  Google Scholar 

  235. Delmonico MJ, Kostek MC, Johns J, Hurley BF, Conway JM. Can dual energy x-ray absorptiometry provide a valid assessment of changes in thigh muscle mass with strength training in older adults? Eur J Clin Nutr. 2008;62:1372–8.

    CAS  PubMed  Google Scholar 

  236. D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552:499–511.

    PubMed  PubMed Central  Google Scholar 

  237. Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB. Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology. 2009;55:217–23.

    PubMed  Google Scholar 

  238. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39:412–23.

    PubMed  PubMed Central  Google Scholar 

  239. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan Van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.

    PubMed  Google Scholar 

  240. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.

    CAS  PubMed  Google Scholar 

  241. Ostchega Y, Dillon CF, Lindle R, Carroll M, Hurley BF. Isokinetic leg muscle strength in older Americans and its relationship to a standardized walk test: data from the national health and nutrition examination survey 1999–2000. J Am Geriatr Soc. 2004;52:977–82.

    PubMed  Google Scholar 

  242. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, le Couteur DG, Creasey H, Waite LM, Seibel MJ, Sambrook PN. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the concord health and ageing in men project. J Am Geriatr Soc. 2010;58:2055–62.

    PubMed  Google Scholar 

  243. Sayers SP, Guralnik JM, Thombs LA, Fielding RA. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc. 2005;53:467–71.

    PubMed  Google Scholar 

  244. Murphy RA, Ip EH, Zhang Q, Boudreau RM, Cawthon PM, Newman AB, Tylavsky FA, Visser M, Goodpaster BH, Harris TB. Transition to sarcopenia and determinants of transitions in older adults: a population-based study. J Gerontol A Biol Sci Med Sci. 2014;69:751–8.

    PubMed  Google Scholar 

  245. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.

    CAS  PubMed  Google Scholar 

  246. Francis P, Lyons M, Piasecki M, Mc Phee J, Hind K, Jakeman P. Measurement of muscle health in aging. Biogerontology. https://doi.org/10.1007/s10522-017-9697-5.

  247. Wang ZM, Visser M, Ma R, Baumgartner RN, Kotler D, Gallagher D, Heymsfield SB. Skeletal muscle mass: evaluation of neutron activation and dual-energy x-ray absorptiometry methods. J Appl Physiol (1985). 1996;80:824–31.

    CAS  Google Scholar 

  248. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985). 1998;85:115–22.

    CAS  Google Scholar 

  249. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD. Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol (1985). 2000;88:452–6.

    CAS  Google Scholar 

  250. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol. 2013;48:492–8.

    PubMed  Google Scholar 

  251. Silva AM, Shen W, Heo M, Gallagher D, Wang Z, Sardinha LB, Heymsfield SB. Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol. 2010;22:76–82.

    PubMed  PubMed Central  Google Scholar 

  252. Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55:663–72.

    CAS  PubMed  Google Scholar 

  253. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76:473–81.

    CAS  PubMed  Google Scholar 

  254. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletalmuscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–64.

    PubMed  Google Scholar 

  255. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA. Hurley BF (1997) age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol. 1985;83:1581–7.

    Google Scholar 

  256. Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL, Hurley BF. (1999) muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol. 1985;86:188–94.

    Google Scholar 

  257. Metter EJ, Lynch N, Conwit R, Lindle R, Tobin J, Hurley B. Muscle quality and age: cross-sectional and longitudinal comparisons. J Gerontol A Biol Sci Med Sci. 1999;54:B207–18.

    CAS  PubMed  Google Scholar 

  258. Francis P, Toomey C, Mc Cormack W, Lyons M, Jakeman P. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging. 2016; https://doi.org/10.1111/cpf.12332.

  259. Brady AO, Straight CR, Evans EM. Body composition, muscle capacity, and physical function in older adults: an integrated conceptual model. J Aging Phys Act. 2014;22:441–52.

    PubMed  Google Scholar 

  260. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39(2):155–62.

    PubMed  PubMed Central  Google Scholar 

  261. Manini T. Development of physical disability in older adults. Curr Aging Sci. 2011;4:184–91.

    PubMed  PubMed Central  Google Scholar 

  262. Landers KA, Hunter GR, Wetzstein CJ, Bamman MM, Weinsier RL. The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J Gerontol A Biol Sci Med Sci. 2001;56:B443–8.

    CAS  PubMed  Google Scholar 

  263. Pahor M, Blair SN, Espeland M, Fielding R, Gill TM, Guralnik JM, Hadley EC, King AC, Kritchevsky SB, Maraldi C, Miller ME, Newman AB, Rejeski WJ, Romashkan S, Studenski S. Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci. 2006;61:1157–65.

    PubMed  Google Scholar 

  264. Vasunilashorn S, Coppin AK, Patel KV, Lauretani F, Ferrucci L, Bandinelli S, Guralnik JM. Use of the short physical performance battery score to predict loss of ability to walk 400 meters: analysis from the In CHIANTI study. J Gerontol A Biol Sci Med Sci. 2009;64:223–9.

    PubMed  Google Scholar 

  265. Volpato S, Cavalieri M, Sioulis F, Guerra G, Maraldi C, Zuliani G, Fellin R, Guralnik JM. Predictive value of the short physical performance battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci. 2011;66:89–96.

    PubMed  Google Scholar 

  266. Francis P, Mc Cormack W, Lyons M, Jakeman P. Age group differences in the performance of selected tests of physical function and association with lower extremity strength. J Geriatr Phys Ther. 2017;

    Google Scholar 

  267. Glenn JM, Vincenzo J, Canella CK, Binns A, Gray M. Habitual and maximal dual-task gait speeds among sedentary, recreationally active, and masters athlete late middle-aged adults. J Aging Phys Act. 2015;23:433–7.

    PubMed  Google Scholar 

  268. Buchner DM, Larson EB, Wagner EH, Koepsell TD, de Lateur BJ. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing. 1996;25:386–91.

    CAS  PubMed  Google Scholar 

  269. Rikli RE, Jones CJ. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J Aging Phys Act. 1998;6:363–75.

    Google Scholar 

  270. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9.

    CAS  PubMed  Google Scholar 

  271. Francis P, Mc Cormack W, Toomey C, Lyons M, Jakeman P. Muscle strength can better differentiate between gradations of functional performance than muscle quality in healthy 50–70 y women. Braz J Phys Ther. 2017;21(6):457–64.

    PubMed  PubMed Central  Google Scholar 

  272. Francis P, Mc Cormack W, Toomey C, Norton C, Saunders J, Kerin E, Lyons M, Jakeman P. Twelve weeks’ progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women. Biogerontology. 2016; https://doi.org/10.1007/s10522-016-9671-7.

  273. Yaguchi K, Furutani M. An applicability study of the aahperd’s functional fitness test for elderly american adults to elderly Japanese adults. Environ Health Prev Med. 1998;3:130–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Simonsick EM, Montgomery PS, Newman AB, Bauer DC, Harris T. Measuring fitness in healthy older adults: the health ABC long distance corridor walk. J Am Geriatr Soc. 2001;49:1544–8.

    CAS  PubMed  Google Scholar 

  275. Bean J, Herman S, Kiely DK, Callahan D, Mizer K, Frontera WR, Fielding RA. Weighted stair climbing in mobility-limited older people: a pilot study. J Am Geriatr Soc. 2002;50:663–70.

    PubMed  Google Scholar 

  276. Ryu M, Jo J, Lee Y, Chung YS, Kim KM, Baek WC. Association of physical activity with sarcopenia and sarcopenic obesity in community-dwelling older adults: the fourth Korea national health and nutrition examination survey. Age Ageing. 2013;42:734–40.

    PubMed  Google Scholar 

  277. Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol. 2011;111:1201–10.

    CAS  PubMed  Google Scholar 

  278. Trappe SW, Trappe TA, Lee GA, Widrick JJ, Costill DL, Fitts RH. Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function. J Appl Physiol. 2001;91:57–64.

    CAS  PubMed  Google Scholar 

  279. Alkner BA, Tesch PA. Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol. 2004;93:294–305.

    PubMed  Google Scholar 

  280. Rittweger J, Möller K, Bareille MP, Felsenberg D, Zange J. Muscle X-ray attenuation is not decreased during experimental bed rest. Muscle Nerve. 2013;47:722–30.

    PubMed  Google Scholar 

  281. Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P. Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol. 2004;557:501–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Haus JM, Carrithers JA, Carroll CC, Tesch PA, Trappe TA. Contractile and connective tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated microgravity and exercise countermeasures. Am J Physiol Regul Integr Comp Physiol. 2007;293:1722–7.

    Google Scholar 

  283. Biolo G, Flemming RYD, Maggi SP, Nguyen TT, Herndon DN, Wolfe RR. Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab. 2002;87:3378–84.

    CAS  PubMed  Google Scholar 

  284. Zhang X-J, Chinkes DL, Wolfe RR. The flow phase of wound metabolism is characterized by stimulated protein synthesis rather than cell proliferation. J Surg Res. 2006;135(1):61–7. https://doi.org/10.1016/j.jss.2006.03.003.

  285. Wolfe RR, Martini WZ. Changes in intermediary metabolism in severe surgical illness. World J Surg. 2000;24:639–47.

    CAS  PubMed  Google Scholar 

  286. Pereira CT, Barrow RE, Sterns AM, et al. Age dependent differences in survival after severe burns: a unicentric review of 1674 patients and 179 autopsies over 15 years. J Am Coll Surg. 2005. (in press)

    Google Scholar 

  287. Kadar L, Albertsson M, Arebert J, Landbert T, Mattsson S. The prognostic value of body protein in patients with lung cancer. Ann N Y Acad Sci. 2000;904:584–91.

    CAS  PubMed  Google Scholar 

  288. Bams JL, Miranda DR. Outcome and costs of intensive care. Int Care Med. 1985;11:234–41.

    CAS  Google Scholar 

  289. Cooper C. The crippling consequences of fractures and their impact on quality of life. Am J Med. 1997;103:125–75.

    Google Scholar 

  290. Anderson RN, Smith BL. Deaths: leading causes for 2002. National Vital Statistics reports. Vol 53. Hyattsville: National Center for Health Statistics, 2005. (No. 17).

    Google Scholar 

  291. Anker SD, Steinborn W, Strassburg S. Cardiac cachexia. Ann Med. 2005;36:518–29.

    Google Scholar 

  292. Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50:5–8.

    PubMed  Google Scholar 

  293. Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jequier E. Energy expenditure by doubly-labeled water: validation in humans and proposed calculations. Am J Physiol Endocrinol Metab. 1986;250:R823–30.

    CAS  Google Scholar 

  294. Waterlow JC, Garlick PJ, Millward DJ. Protein turnover in mammalian tissues and in the whole body. Amsterdam: North Holland Publishing Co; 1978. p. 753.

    Google Scholar 

  295. Tipton KD, Borsheim E, Wolf SE, Stanford AP, Wolfe RR. Acute response of net muscle protein balance reflects 24h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab. 2002;284:E76–9.

    PubMed  Google Scholar 

  296. Newsholme EA. Substrate cycles: their metabolic, energetic and thermic consequences in man. Biochem Soc Symp. 1978;43:183–205.

    CAS  Google Scholar 

  297. Giordano M, Castellino P. Correlation between amino acid induced changes in energy expenditure and protein metabolism in humans. Nutrition. 1997;13:309–12.

    CAS  PubMed  Google Scholar 

  298. Hibbert JM, Broemeling L, Isenberg JN, Wolfe RR. Determinants of free-living energy expenditure in normal weight and obese women measured by doubly labeled water. Obes Res. 1994;2:44–53.

    CAS  PubMed  Google Scholar 

  299. Paddon-Jones D, Sheffield-Moore M, Aarsland A, Wolfe RR, Ferrando AA. Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005;288:E761–7.

    CAS  PubMed  Google Scholar 

  300. Rasmussen B, Wolfe RR. Regulation of fatty acid oxidation in skeletal muscle. Annu Rev Nutr. 1999;19:463–84.

    CAS  PubMed  Google Scholar 

  301. Ferrando AA, Sheffield-Moore M, Yeckel CW, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282:E601–7.

    CAS  PubMed  Google Scholar 

  302. Layman DK, Boileau RA, Erickson DJ, et al. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr. 2003;133:411–7.

    CAS  PubMed  Google Scholar 

  303. Reaven GM. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr. 2005;25:391–406.

    CAS  PubMed  Google Scholar 

  304. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992;15:318–68.

    CAS  PubMed  Google Scholar 

  305. Wolfe RR, Peters EJ, Klein S, Holland OB, Rosenblatt JI, Gary H Jr. Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects. Am J Physiol Endocrinol Metab. 1987;252:E189–96.

    CAS  Google Scholar 

  306. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    CAS  PubMed  Google Scholar 

  307. Sidossis LS, Wolfe RR. Glucose and insulin-induced inhibition of fatty acid oxidation: the glucose-fatty acid cycle reversed. Am J Physiol Endocrinol Metab. 1996;270:E733–8.

    CAS  Google Scholar 

  308. Kelley DE, Goodpaster B, Wing RR, Simoneau J. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity and weight loss. Am J Physiol Endocrinol Metab. 1999;277:E1130–41.

    CAS  Google Scholar 

  309. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48:1600–6.

    CAS  PubMed  Google Scholar 

  310. Pan DA, Lillioja S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46:983–8.

    CAS  PubMed  Google Scholar 

  311. Goodpaster BH, Krishnaswami S, Resnick H, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care. 2003;26:372–9.

    PubMed  Google Scholar 

  312. Ferrannini E, Vichi S, Beck-Nielsen H, Laakso M, Paolisso G, Smith U. Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes. 1996;45:947–53.

    CAS  PubMed  Google Scholar 

  313. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C and IkB-alpha. Diabetes. 2002;51:2005–11.

    CAS  PubMed  Google Scholar 

  314. Sial S, Coggan AR, Carroll R, Goodwin J, Klein S. Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol Endocrinol Metab. 1996;271:E983–9.

    CAS  Google Scholar 

  315. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Rimbert V, Boirie Y, Bedu M, Hocquette J-F, Ritz P, Morio B. Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. FASEB J. 2004;18:737–9.

    CAS  PubMed  Google Scholar 

  317. Rasmussen BB, Fujita S, Wolfe RR, et al. Insulin resistance of protein metabolism in aging. FASEB. 2006;20:768–9.

    CAS  Google Scholar 

  318. Shmitz-Peiffer C. Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal. 2000;12:583–94.

    Google Scholar 

  319. Merrill A, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990;1044:1–12.

    CAS  PubMed  Google Scholar 

  320. Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12:1–9.

    Google Scholar 

  321. Ducher G, Jaffre C, Arlettaz A, Benhamou CL, Courteix D. Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms. Can J Appl Physiol. 2005;30:3–17.

    PubMed  Google Scholar 

  322. Pang MY, Eng JJ. Muscle strength is a determinant of bone mineral content in the hemiparetic upper extremity: implications for stroke rehabilitation. Bone. 2005;37:103–11.

    PubMed  PubMed Central  Google Scholar 

  323. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men – the MINOS study. J Bone Miner Res. 2005;20:721–9.

    PubMed  Google Scholar 

  324. Frost HM. Coming changes in accepted wisdom about “osteoporosis”. J Musculoskelet Neuronal Interact. 2004;4:78–85.

    CAS  PubMed  Google Scholar 

  325. Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–8.

    CAS  PubMed  Google Scholar 

  326. Isoyama N, Qureshi AR, Avesani CM, et al. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol. 2014;9:1720–8.

    PubMed  PubMed Central  Google Scholar 

  327. Prado CM, Purcell SA, Alish C, Pereira SL, Deutz NE, Heyland DK. Implications of low muscle mass across the continuum of care: a narrative review. J Ann Med. 2018;50(8):675–93.

    Google Scholar 

  328. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta blockade after burn injury. N Engl J Med. 2001;345:1223–9.

    CAS  PubMed  Google Scholar 

  329. Englehardt D, Dorr G, Jaspers C, Knorr D. Ketoconazole blocks cortisol secretion in man by inhibition of adrenal 11 beta-hydroxylase. Klin Wochenschr. 1985;63:607–12.

    Google Scholar 

  330. Sheffield-Moore M, Wolfe RR, Gore DC, Wolf SE, Ferrer DM, Ferrando AA. Combined effects of hyperaminoacidemia and oxandrolone on skeletal muscle protein synthesis. Am J Physiol Endocrinol Metab. 2000;278:E273–9.

    CAS  PubMed  Google Scholar 

  331. Dela F, Mikines KJ, von Linstow M, Secher NH, Galbo H. Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol Endocrinol Metab. 1992;263:E1134–43.

    CAS  Google Scholar 

  332. Fiatarone MA, O’Neill EF, Rayan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1739–75.

    Google Scholar 

  333. Hughes VA, Fiatarone MA, Fielding RA, Elahi BB, Evans WJ. Exercise increases muscle glut-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol Endocrinol Metab. 1993;264:E855–62.

    CAS  Google Scholar 

  334. Holloszy JO. The biology of aging. Mayo Clin Proc. 2000;75(suppl):S3–8, discussion S8–9

    PubMed  Google Scholar 

  335. Borges O. Isometric and isokinetic knee extension and flexion torque in men and women aged 20–70. Scand J Rehabil Med. 1989;21:45–53.

    CAS  PubMed  Google Scholar 

  336. Balagopal P, Royackers OE, Adey DB, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic proteins in humans. Am J Physiol Endocrinol Metab. 1997;273:E790–800.

    CAS  Google Scholar 

  337. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Protein and amino acids. Institute of Medicine, Food and Nutrition Board. Internet: http://www.nap.edu/books/0309085373/html/2002. Accessed 16 June 2019.

  338. Motil KJ, Matthews DE, Bier DM, Burke JF, Munro HN, Young VR. Whole-body leucine and lysine metabolism: response to dietary protein intake in young men. Am J Physiol Endocrinol Metab. 1981;240:E712–21.

    CAS  Google Scholar 

  339. Paddon-Jones D, Sheffield-Moore M, Zhang X-J, et al. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286:E321–8.

    CAS  PubMed  Google Scholar 

  340. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular but not intracellular amino acid availability: a dose response study. J Physiol. 2003;552:315–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Carroll CC, Fluckey JD, Williams RH, Sullivan DH, Trappe TA. Human soleus and vastus lateralis muscle protein metabolism with an amino acid infusion. Am J Physiol Endocrinol Metab. 2005;288:E479–85.

    CAS  PubMed  Google Scholar 

  342. Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr. 2004;80:447–52.

    CAS  PubMed  Google Scholar 

  343. Hoppe C, Molgaard C, Thomsen BL, Juul A, Michaelsen KF. Protein intake at 9 mo of age is associated with body size but not with body fat in 10-y-old Danish children. Am J Clin Nutr. 2004;79:494–501.

    CAS  PubMed  Google Scholar 

  344. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol Endocrinol Metab. 1997;273:E122–9.

    CAS  Google Scholar 

  345. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004;36:2073–81.

    CAS  PubMed  Google Scholar 

  346. Harber MP, Schenk S, Barkan AL, Horowitz F. Effects of dietary carbohydrate restriction with high protein intake on protein metabolism and the somatotropic axis. J Clin Endocrinol Metab. 2005;90:5175–81.

    CAS  PubMed  Google Scholar 

  347. World Health Organization Protein and amino acid requirements in human nutrition. WHO Technical Report Series 935 [1].

    Google Scholar 

  348. Barbosa-Silva MC. Subjective and objective nutritional assessment methods: what do they really assess? Curr Opin Clin Nutr Metab Care. May 2008;11(3):248–54. https://doi.org/10.1097/MCO.0b013e3282fba5d7.

    Article  PubMed  Google Scholar 

  349. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids (macronutrients). The National Academies Press; 2005.

    Google Scholar 

  350. Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in health adults. Am J Nutr. 2003;77(1):109–27.

    CAS  Google Scholar 

  351. Elango R, Humayun MA, Ball RO, Pencharz PB. Protein requirements of healthy, school-aged children determined by the indicator amino acid oxidation method. Am J Clin Nutr. 2011;94(6):1545–52. https://doi.org/10.3945/ajcn.111.012815.

    Article  CAS  PubMed  Google Scholar 

  352. Dietary guidelines for Americans 2015–2020 (8th Edition). https://health.gov/dietaryguidelines/2015/resources/2015-2020_Dietary_Guidelines.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Miedany, Y. (2022). Muscle Health. In: El Miedany, Y. (eds) New Horizons in Osteoporosis Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87950-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87950-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87949-5

  • Online ISBN: 978-3-030-87950-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics