Skip to main content

Incontinentia Pigmenti

  • Chapter
  • First Online:
Neurocutaneous Disorders
  • 829 Accesses

Abstract

Incontinentia pigmenti (IP) is an X-linked genodermatosis caused by loss-of-function mutations in the IKBKG gene (previously known as the NEMO gene). De novo mutations are responsible for the majority of IKBKG pathogenic variants, and a common recurrent rearrangement (deletion of exons 4–10) accounts for 80% of cases. The disorder is seen primarily in heterozygous females as the moderating effects of X-chromosome mosaicism allow for survival, although males can also be affected in rare circumstances. Incontinentia pigmenti is a multisystemic disorder with highly variable phenotypic expressivity. It is characterized by distinct cutaneous features which occur in four successive and overlapping stages (vesicular, verrucous, hyperpigmented, hypopigmented) with linear arrangements along Blaschko lines.

Additional neuroectodermal manifestations include varying degrees of involvement of the eyes, nails, hair, teeth, and central nervous system. These extracutaneous manifestations, particularly the ophthalmologic and neurologic, have potentially serious long-term sequelae including retinal detachment, seizures, and ischemic stroke leading to motor and/or cognitive impairment. Early recognition and diagnosis of incontinentia pigmenti are therefore critical so that appropriate monitoring, treatment, and support for these patients can be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBCT:

Cone beam computed tomography

CNS:

Central nervous system

DWI:

Diffusion-weighted imaging

EEG:

Electroencephalography

IKBKG:

Inhibitor of κB kinase gamma

IP:

Incontinentia pigmenti

IV:

Intravenous

MDT:

Multidisciplinary team

MRI:

Magnetic resonance imaging

NEMO:

Nuclear factor-κB essential modulator

NF-κB:

Nuclear factor-κB

OCT:

Optical coherence tomography

OT:

Occupational therapy

PCR:

Polymerase chain reaction

PT:

Physiotherapy

RPE:

Retinal pigment epithelium

SLT:

Speech and language therapy

STIPs:

Subungual tumors of IP

SWI:

Susceptibility-weighted imaging

TNF:

Tumor necrosis factor

VGEF:

Vascular endothelial growth factor

XR:

X-ray

References

  1. OMIM Entry—# 308300—INCONTINENTIA PIGMENTI; IP [Internet]. [Cited 2021 19]. https://omim.org/entry/308300.

  2. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–72.

    CAS  PubMed  Google Scholar 

  3. Fusco F, Pescatore A, Steffann J, et al. Clinical utility gene card: for incontinentia pigmenti. Eur J Hum Genet [Internet]. 2019;27:1894–900. https://doi.org/10.1038/s41431-019-0463-9.

    Article  Google Scholar 

  4. Courtney JM, Blackburn J, Sharpe PT. The Ectodysplasin and NFκB signalling pathways in odontogenesis. Arch Oral Biol. 2005;50(2):159–63. Elsevier Ltd.

    CAS  PubMed  Google Scholar 

  5. Courtois G, Gilmore TD. Mutations in the NF-κB signaling pathway: implications for human disease [Internet]. Oncogene. 2006;25:6831–43. [Cited 2021]. https://pubmed.ncbi.nlm.nih.gov/17072331/.

    CAS  PubMed  Google Scholar 

  6. Courtois G, Smahi A. NF-κB-related genetic diseases [Internet]. Cell Death Differ. 2006;13:843–51. [Cited 2021]. Nature Publishing Group.

    CAS  PubMed  Google Scholar 

  7. Smahi A, Courtois G, Rabia SH, Döffinger R, Bodemer C, Munnich A, et al. The NF-κB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet. 2002;11:2371–5.

    CAS  PubMed  Google Scholar 

  8. Orange JS, Geha RS. Finding NEMO: genetic disorders of NF-κB activation. J Clin Invest. 2003;112:983–5. The American Society for Clinical Investigation.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Scheuerle AE, Ursini MV. GeneReviews: incontinentia pigmenti. Updated. 2017. p. 1–24.

    Google Scholar 

  10. Orphanet: incontinentia pigmenti [Internet]. [Cited 2021]. https://www.orpha.net/consor/.

  11. Prevalence and incidence of rare diseases: bibliographic data [Internet]. [Cited 2021]. www.orpha.net.

  12. Hull S, Arno G, Thomson P, et al. Somatic mosaicism of a novel IKBKG mutation in a male patient with incontinentia pigmenti. Am J Med Genet Part A. 2015;1(167):1601–4.

    Google Scholar 

  13. Fusco F, Conte MI, Diociaiuti A, et al. Unusual father-to-daughter transmission of incontinentia pigmenti due to mosaicism in IP males. Pediatrics. 2017;140:e20162950.

    PubMed  Google Scholar 

  14. Carlberg VM, Lofgren SM, Mann JA, et al. Hypohidrotic ectodermal dysplasia, osteopetrosis, lymphedema, and immunodeficiency in an infant with multiple opportunistic infections. Pediatr Dermatol. 2014;31:716–21.

    PubMed  Google Scholar 

  15. Mancini AJ, Lawley LP, Uzel G. X-linked ectodermal dysplasia with immunodeficiency caused by NEMO mutation: early recognition and diagnosis. Arch Dermatol. 2008;144:342–6.

    PubMed  Google Scholar 

  16. OMIM Entry—# 300291—ECTODERMAL DYSPLASIA AND IMMUNODEFICIENCY 1; EDAID1. [Cited 2021]. https://omim.org/entry/300291.

  17. OMIM Entry—# 300636—IMMUNODEFICIENCY 33; IMD33. [Cited 2021]. https://omim.org/entry/300636#molecularGenetics.

  18. Kenwrick S, Woffendin H, Jakins T, et al. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am J Hum Genet. 2001;69:1210–7.

    CAS  PubMed  Google Scholar 

  19. Alabdullatif Z, Coulombe J, Steffann J, et al. Postzygotic mosaicism and incontinentia pigmenti in male patients: molecular diagnosis yield. Br J Dermatol. 2018;178:e261–2.

    CAS  PubMed  Google Scholar 

  20. Ardelean D, Pope E. Incontinentia pigmenti in boys: a series and review of the literature. Pediatr Dermatol [Internet]. 2006;23:523–7.

    Google Scholar 

  21. Wang R, Lara-Corrales I, Kannu P, Pope E. Unraveling incontinentia pigmenti: a comparison of phenotype and genotype variants. J Am Acad Dermatol. 2019;81:1142–9.

    CAS  PubMed  Google Scholar 

  22. Minić S, Trpinac D, Obradović M. Incontinentia pigmenti diagnostic criteria update. Clin Genet. 2014;85:536–42.

    PubMed  Google Scholar 

  23. Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol. 2002;47:169–90.

    PubMed  Google Scholar 

  24. Fusco F, Valente V, Fergola D, et al. The Incontinentia Pigmenti Genetic Biobank: study design and cohort profile to facilitate research into a rare disease worldwide. Eur J Hum Genet. 2019;27:1509–18.

    PubMed  PubMed Central  Google Scholar 

  25. Carney RG. Incontinentia pigmenti: a world statistical analysis. Arch Dermatol. 2021;112:535–42.

    Google Scholar 

  26. Hadj-Rabia S, Froidevaux D, Bodak N, et al. Clinical study of 40 cases of incontinentia pigmenti. Arch Dermatol. 2003;139:1163–70.

    PubMed  Google Scholar 

  27. Kim BJ, Shin HS, Won CH, et al. Incontinentia pigmenti: clinical observation of 40 Korean cases. J Korean Med Sci. 2006;21:474.

    PubMed  PubMed Central  Google Scholar 

  28. Poziomczyk CS, Bonamigo RR, Santa Maria FD, et al. Clinical study of 20 patients with incontinentia pigmenti. Int J Dermatol. 2016;55:e87–93.

    PubMed  Google Scholar 

  29. Phan TA, Wargon O, Turner AM. Incontinentia pigmenti case series: clinical spectrum of incontinentia pigmenti in 53 female patients and their relatives. Clin Exp Dermatol. 2005;30:474–80.

    CAS  PubMed  Google Scholar 

  30. Vicente-Villa A, Villanueva Lamas J, Malaya Pascual A, Lopez Cuesta D, Pinede Marfa M, González-Enseñat MA. Incontinentia pigmenti: a report of ten cases. Eur J Pediatr. 2001;160:64–5.

    CAS  PubMed  Google Scholar 

  31. Scheuerle AE. Incontinentia pigmenti in adults. Am J Med Genet Part A. 2019;179:1415–9.

    PubMed  Google Scholar 

  32. Fusco F, Paciolla M, Conte MI, et al. Incontinentia pigmenti: report on data from 2000 to 2013. Orphanet J Rare Dis. 2014;9:93.

    PubMed  PubMed Central  Google Scholar 

  33. Donnai D, Jones EA, Incontinentia pigmenti. Cassidy and Allanson’s management of genetic syndromes; 2021. p. 505–14.

    Google Scholar 

  34. Poziomczyk CS, Recuero JK, Bringhenti L, et al. Incontinentia pigmenti. An Bras Dermatol. 2014;89:26–36.

    PubMed  PubMed Central  Google Scholar 

  35. Hadj-Rabia S, Rimella A, Smahi A, et al. Clinical and histologic features of incontinentia pigmenti in adults with nuclear factor-κB essential modulator gene mutations. J Am Acad Dermatol. 2011;64:508–15.

    CAS  PubMed  Google Scholar 

  36. Landy SJ, Donnai D. Incontinentia pigmenti (Bloch-Sulzberger syndrome). J Med Genet. 1993;30:53–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Guo Y, Ping Y, et al. Neonatal incontinentia pigmenti: six cases and a literature review. Exp Ther Med. 2014;8:1797–806.

    PubMed  PubMed Central  Google Scholar 

  38. Jones EA, Donnai D. Incontinentia pigmenti. In: Harper’s textbook of pediatric dermatology; 2019. p. 1718–24.

    Google Scholar 

  39. Bodemer C, Diociaiuti A, Hadj-Rabia S, et al. Multidisciplinary consensus recommendations from a European network for the diagnosis and practical management of patients with incontinentia pigmenti. J Eur Acad Dermatol Venereol. 2020;34:1415–24.

    CAS  PubMed  Google Scholar 

  40. Moss C, Ince P. Anhidrotic and achromians lesions in incontinentia pigmenti. Br J Dermatol. 1987;116:839–49.

    CAS  PubMed  Google Scholar 

  41. Greene-Roethke C. Incontinentia Pigmenti: a summary review of this rare ectodermal dysplasia with neurologic manifestations, including treatment protocols. Pediatr Nurse Assoc Pract. 2017;31:e45–52.

    Google Scholar 

  42. Meuwissen MEC, Mancini GMS. Neurological findings in incontinentia pigmenti; a review [Internet]. Eur J Med Genet. 2012;55:323–31.

    PubMed  Google Scholar 

  43. Kirkorian AY, Cohen B. Incontinentia pigmenti. In: Rosenberg’s molecular and genetic basis of neurological and psychiatric disease [Internet]. Elsevier; 2020. p. 233–9.

    Google Scholar 

  44. Pascual-Castroviejo I, Pascual-Pascual SI, Velázquez-Fragua R, Martínez V. Incontinentia pigmenti. Hallazgos clínicos y radiológicos en una serie de 12 pacientes. Neurologia. 2006;21:239–48.

    CAS  PubMed  Google Scholar 

  45. Minić S, Trpinac D, Obradović M. Systematic review of central nervous system anomalies in incontinentia pigmenti. Orphanet J Rare Dis. 2013;8:25.

    PubMed  PubMed Central  Google Scholar 

  46. Minić S, Trpinac D, Gabriel H, Gencik M, Obradović M. Dental and oral anomalies in incontinentia pigmenti: a systematic review. Clin Oral Investig. 2013;17:1–8.

    PubMed  Google Scholar 

  47. Pizzamiglio MR, Piccardi L, Bianchini F, Canzano L, Palermo L, Fusco F, et al. Incontinentia Pigmenti: learning disabilities are a fundamental hallmark of the disease. PLoS One. 2014;9(1):e87771.

    PubMed  PubMed Central  Google Scholar 

  48. Pizzamiglio MR, Piccardi L, Bianchini F, et al. Cognitive-behavioural phenotype in a group of girls from 1.2 to 12 years old with the Incontinentia Pigmenti syndrome: recommendations for clinical management. Appl Neuropsychol Child. 2017;6:327–34.

    PubMed  Google Scholar 

  49. Soltirovska Salamon A, Lichtenbelt K, Cowan FM, et al. Clinical presentation and spectrum of neuroimaging findings in newborn infants with incontinentia pigmenti. Dev Med Child Neurol. 2016;58:1076–84.

    PubMed  Google Scholar 

  50. Wolf NI, Krämer N, Harting I, Seitz A, Ebinger F, Pöschl J, et al. Diffuse cortical necrosis in a neonate with incontinentia pigmenti and an encephalitis-like presentation. Am J Neuroradiol. 2005;26:1580–2.

    PubMed  PubMed Central  Google Scholar 

  51. Yoshikawa H, Uehara Y, Abe T, Oda Y. Disappearance of a white matter lesion in incontinentia pigmenti. Pediatr Neurol. 2000;23:364–7.

    CAS  PubMed  Google Scholar 

  52. Lee JH, Im SA, Chun JS. Serial changes in white matter lesions in a neonate with incontinentia pigmenti. Childs Nerv Syst. 2008;24:525–8.

    CAS  PubMed  Google Scholar 

  53. van Loo G, De Lorenzi R, Schmidt H, et al. Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol. 2006;7:954–61.

    PubMed  Google Scholar 

  54. Herrmann O, Baumann B, De Lorenzi R, et al. IKK mediates ischemia-induced neuronal death. Nat Med. 2005;11:1322–9.

    CAS  PubMed  Google Scholar 

  55. Müller K, Courtois G, Ursini MV, Schwaninger M. New insight into the pathogenesis of cerebral small-vessel diseases. Stroke. 2017;48:520–7.

    PubMed  Google Scholar 

  56. Wu H, Luo J, Yu H, Rattner A, et al. Cellular Resolution Maps of X Chromosome inactivation: implications for neural development, function, and disease. Neuron. 2014;81:103–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Minić S, Trpinac D, Obradović M. Blaschko line analogies in the central nervous system: a hypothesis. Med Hypotheses. 2013;81:671–4.

    PubMed  Google Scholar 

  58. O’Doherty M, Mc Creery K, Green AJ, et al. Incontinentia pigmenti—ophthalmological observation of a series of cases and review of the literature. Br J Ophthalmol. 2011;95:11–6.

    PubMed  Google Scholar 

  59. Minić S, Obradović M, Kovačević I, Trpinac D. Ocular anomalies in incontinentia pigmenti: literature review and meta-analysis. Srp Arh Celok Lek. 2010;138:408–13.

    PubMed  Google Scholar 

  60. Peng J, Zhang Q, Long X, et al. Incontinentia pigmenti-associated ocular anomalies of paediatric incontinentia pigmenti patients in China. Acta Ophthalmol. 2019;97:265–72. [Cited 2021].

    CAS  PubMed  Google Scholar 

  61. Chen CJ, Han IC, Tian J, et al. Extended follow-up of treated and untreated retinopathy in incontinentia pigmenti: analysis of peripheral vascular changes and incidence of retinal detachment. JAMA Ophthalmol. 2015;133:542–8.

    PubMed  Google Scholar 

  62. Swinney CC, Han DP, Karth PA. Incontinentia pigmenti: a comprehensive review and update. Ophthalmic Surg Lasers Imaging Retina. 2015;46:650–7.

    PubMed  Google Scholar 

  63. Spandau U, Kim SJ. In: Spandau U, Kim SJ, editors. Incontinentia pigmenti BT—pediatric retinal vascular diseases: from angiography to vitrectomy. Cham: Springer International Publishing; 2019. p. 19–26.

    Google Scholar 

  64. Selvadurai D, Salomão DR, Baratz KH. Corneal abnormalities in incontinentia pigmenti: histopathological and confocal correlations. Cornea. 2008;27:833–6.

    PubMed  Google Scholar 

  65. Basilius J, Young MP, Michaelis TC, et al. Structural abnormalities of the inner macula in incontinentia pigmenti. JAMA Ophthalmol. 2015;133:1067–72.

    PubMed  PubMed Central  Google Scholar 

  66. Liu TYA, Han IC, Goldberg MF, et al. Multimodal retinal imaging in incontinentia pigmenti including optical coherence tomography angiography findings from an older cohort with mild phenotype. JAMA Ophthalmol. 2018;136:467–72.

    PubMed  PubMed Central  Google Scholar 

  67. Mangalesh S, Chen X, Tran-Viet D, et al. ASSESSMENT of the retinal structure in children with incontinentia pigmenti. Retina. 2017;37:1568–74.

    PubMed  PubMed Central  Google Scholar 

  68. Gundlach BS, Tsui I. Optical coherence tomography in pediatric patients: a clinical review. Ther Adv Ophthalmol. 2020;12:251.

    Google Scholar 

  69. Mariath LM, Santa Maria FD, Poziomczyk CS, et al. Intrafamilial clinical variability in four families with incontinentia pigmenti. Am J Med Genet A. 2018;176:2318–24.

    PubMed  Google Scholar 

  70. Santa-Maria FD, Mariath LM, Poziomczyk CS, et al. Dental anomalies in 14 patients with IP: clinical and radiological analysis and review. Clin Oral Investig. 2017;21:1845–52.

    PubMed  Google Scholar 

  71. Bergendal B. Orodental manifestations in ectodermal dysplasia—a review. Am J Med Genet A. 2014;164:2465–71.

    Google Scholar 

  72. Chen AYL, Chen K. Dental treatment considerations for a pediatric patient with incontinentia pigmenti (Bloch-Sulzberger syndrome). Eur J Dent. 2017;11:264–7.

    PubMed  PubMed Central  Google Scholar 

  73. Laskowska M, Dąbkowska M, Szpinda-Barczyńska A, et al. Incontinentia pigmenti—a description of three cases. Forum Ortodon. 2018;14:321–32.

    Google Scholar 

  74. Kapadia H, Mues G, D’Souza R. Genes affecting tooth morphogenesis. Orthodont Craniofac Res. 2007;10:237–44.

    CAS  Google Scholar 

  75. Nicolaou N, Graham-Brown RAC. Nail dystrophy, an unusual presentation of incontinentia pigmenti. Br J Dermatol. 2003;149:1286–8.

    CAS  PubMed  Google Scholar 

  76. Hartman DL. Incontinentia pigmenti associated with subungual tumors. Arch Dermatol. 1966;94:632–5.

    CAS  PubMed  Google Scholar 

  77. Kibbi N, Totonchy M, Suozzi KC, et al. A case of subungual tumors of incontinentia pigmenti: a rare manifestation and association with bipolar disease. JAAD Case Rep. 2018;4:737–41.

    PubMed  PubMed Central  Google Scholar 

  78. Montes CM, Maize JC, Guerry-Force ML. Incontinentia pigmenti with painful subungual tumors: a two-generation study. J Am Acad Dermatol. 2004;50(2 Suppl):45–52.

    Google Scholar 

  79. Ferneiny M, Hadj-Rabia S, Regnier S, Ortonne N, Smahi A, Steffann J, et al. Unique subungueal keratoacanthoma revealing incontinentia pigmenti. J Eur Acad Dermatol Venereol. 2016;30:1401–3.

    CAS  PubMed  Google Scholar 

  80. Martinez-Pomar N, Munoz-Saa I, Heine-Suner D, Martin A, Smahi A, Matamoros N. A new mutation in exon 7 of NEMO gene: late skewed X-chromosome inactivation in an incontinentia pigmenti female patient with immunodeficiency. Hum Genet. 2005;118(3–4):458–65.

    PubMed  Google Scholar 

  81. Onnis G, Diociaiuti A, Zangari P, D’Argenio P, Cancrini C, Iughetti L, et al. Cardiopulmonary anomalies in incontinentia pigmenti patients. Int J Dermatol [Internet]. 2018;57:40–5.

    Google Scholar 

  82. Ohnishi H, Kishimoto Y, Taguchi T, et al. Immunodeficiency in two female patients with incontinentia pigmenti with heterozygous NEMO mutation diagnosed by LPS unresponsiveness. J Clin Immunol. 2017;37:529–38.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pope .

Editor information

Editors and Affiliations

Ethics declarations

There are no conflicts of interests relevant to this article to disclose from all identified authors.

Financial Disclosure

There are no financial relationships relevant to this article to disclose from all the identified authors.

Patient Consent

Family consent has been obtained in writing.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kieswetter, L., Pope, E. (2022). Incontinentia Pigmenti. In: Panteliadis, C.P., Benjamin, R., Hagel, C. (eds) Neurocutaneous Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-87893-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87893-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87892-4

  • Online ISBN: 978-3-030-87893-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics