Dornfeld D, Lee DE (2007) Precision manufacturing. Springer
Google Scholar
Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Annals-Manuf Tech 59(2):717–739
Google Scholar
Altintas Y (1987) In-process detection of tool breakages using time series monitoring of cutting forces. Int J Mach Tool Manuf 28(2):157–172
CrossRef
Google Scholar
Kumar SA, Ravindra HV, Srinivasa YG (1997) In-process tool wear monitoring through time series modeling and pattern recognition. Int J Prod Res 35(3):739–751
CrossRef
Google Scholar
Dimla D, Lister P, Leighton N (1997) Automatic tool state identification in a metal turning operation using MLP neural networks and multivariate process parameters. Int J Mach Tool Manuf 38(4):343–352
CrossRef
Google Scholar
Yen C-L, Lu M-C, Chen J-L (2013) Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mech Syst Signal Process 34(1–2):353–366
CrossRef
Google Scholar
Wang J, Xie J, Zhao R, Mao K, Zhang L (2016) A new probabilistic kernel factor analysis for multisensory data fusion: application to tool condition monitoring. IEEE T Instrum Meas 65(11):2527–2537
CrossRef
Google Scholar
Soualhi A, Clerc G, Razik H et al (2016) Hidden Markov models for the prediction of impending faults. IEEE Trans Ind Electron 63(5):1781–1790
CrossRef
Google Scholar
Geramifard O, Xu JX, Zhou JH et al (2014) Multimodal hidden markov model-based approach for tool wear monitoring. IEEE Trans Ind Electron 61(6):2900–2911
CrossRef
Google Scholar
Ren Q, Balazinski M, Baron L et al (2014) Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Inf Sci 255(1):121–134
CrossRef
Google Scholar
Pang CK, Zhou JH, Yan HC (2015) PDF and breakdown time prediction for unobservable wear using enhanced particle filters in precognitive maintenance. IEEE T Instrum Meas 64(3):649–659
CrossRef
Google Scholar
Torabi AJ, Er MJ, Li X, Lim BS, Peen GO (2016) Application of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processes. IEEE Syst J 10(2):721–732
CrossRef
Google Scholar
Li W, Zhang S, Rakheja S (2016) Feature denoising and nearest-farthest distance preserving projection for machine fault diagnosis. IEEE Trans Ind Inform 12(2):393–404
CrossRef
Google Scholar
Kannatey-Asibu E, Yum J, Kim TH (2017) Monitoring tool wear using classifier fusion. Mech Syst Signal Process 85(2):651–661
CrossRef
Google Scholar
Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81
MathSciNet
CrossRef
Google Scholar
Mallat SG (2009) A wavelet tour of signal processing: sparse way, 3rd edn. Academic Press, New York
MATH
Google Scholar
Aharon M, Elad M, Bruckstein A (2006) The K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
CrossRef
Google Scholar
Mairal J, Bach F, Ponce J (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th ICML, Canada, pp 689–696
Google Scholar
Tosic I, Frossard P (2011) Dictionary learning. IEEE Signal Process Mag 28(2):27–38
CrossRef
Google Scholar
Cai G, Chen X, He Z (2013) Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox. Mech Syst Signal Process 41(1):34–53
CrossRef
Google Scholar
Liu H, Liu C, Huang Y (2011) Adaptive feature extraction using sparse coding for machinery fault diagnosis. Mech Syst Signal Process 25(2):558–574
CrossRef
Google Scholar
Peng X, Tang Y, Du W, Qian F (2017) Multimode process monitoring and fault detection: a sparse modeling and dictionary learning method. IEEE Trans Ind Electron 64(6):4866–4875
CrossRef
Google Scholar
Zhu K, Vogel-Heuser B (2014) Sparse representation and its applications in micro-milling condition monitoring: noise separation and tool condition monitoring. Int J Adv Manuf Technol 70(1–4):185–199
CrossRef
Google Scholar
Yang B, Liu R, Chen X (2017) Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD. IEEE Trans Ind Inform 13(3):1321–1331
CrossRef
Google Scholar
Gao B, Woo WL, Tian G, Zhang H (2016) Unsupervised diagnostic and monitoring of defects using waveguide imaging with adaptive sparse representation. IEEE Trans Industr Inf 12(1):405–416
CrossRef
Google Scholar
Du Z, Chen X, Zhang H, Yan R (2015) Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis. IEEE Trans Ind Electron 62(10):6594–6605
CrossRef
Google Scholar
Zhu K, Lin X, Li K, Jiang L (2015) Compressive sensing and sparse decomposition in precision machining process monitoring: from theory to applications. Mechatronics 31(10):3–15
CrossRef
Google Scholar
Mairal J, Bach F, Ponce J (2007) Discriminative learned dictionaries for local image analysis. In: IEEE CVPR, Anchorage, pp 1–8
Google Scholar
Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: IEEE CVPR, San Francisco, pp 2691–2698
Google Scholar
Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. In: IEEE ICCV, pp 543–550
Google Scholar
Yang M, Zhang L, Feng XC, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vision 109(3):209–232
MathSciNet
CrossRef
Google Scholar
Zhu KP, Hong GS, Wong YS, Wang WH (2008) Cutting force denoising in micro-milling tool condition monitoring. Int J Prod Res 46(16):4391–4408
CrossRef
Google Scholar
Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306
MathSciNet
CrossRef
Google Scholar
Plumbley MD, Blumensath T, Daudet L, Gribonval R, Davies ME (2010) Sparse representations in audio and music: from coding to source separation. Proc IEEE 98(6):995–1005
CrossRef
Google Scholar
Zibulevsky M, Pearlmutter BA (2001) Blind source separation by sparse decomposition in a signal dictionary. Neural Comput 13(4):863–882
CrossRef
Google Scholar
Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2008) Supervised dictionary learning. Neural Inf Process Syst (NIPS) 21:1033–1040
Google Scholar
Huang K, Aviyente S (2007) Sparse representation for signal classification. The Neural Inf Process Systems (NIPS) 19:609–617
Google Scholar
Mallat SG (2008) A wavelet tour of signal processing: the sparse way, 3rd edn. Academic Press
MATH
Google Scholar
Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509
MathSciNet
CrossRef
Google Scholar
Cohen A, Dahmen W, DeVore R (2009) Compressed sensing and best k-term approximation. J Am Math Soc 22(1):211–231
MathSciNet
CrossRef
Google Scholar
Theodoridis S, Koutroumbas K (2003) Pattern recognition. Academic Press
Google Scholar
Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745
Google Scholar
Lewicki MS, Sejnowski TJ (2000) Learning overcomplete representations. Neural Comput 12(2):337–365
CrossRef
Google Scholar
Efron B, Johnstone I, Hastie T, Tibshirani R (2002) Least angle regression. Ann Stat 32(2):407–499
MathSciNet
MATH
Google Scholar
Duda RO, Hart PE, Stork DS (2001) Pattern classification, 2nd edn. Wiley
Google Scholar
Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: The 27th annual Asilomar conference on signals, systems, and computers, pp 40–44
Google Scholar
Zhu KP, Mei T, Ye DS (2015) Online condition monitoring in micro-milling: a force waveform shape analysis approach. IEEE Trans Ind Electron 62(6):3806–3813
Google Scholar
Jemielniak K, Arrazola PJ (2007) Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J Manuf Sci Tec 1(2):97–102
CrossRef
Google Scholar