Skip to main content

The Cyber-Physical Production System of Smart Machining System

  • 427 Accesses

Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Abstract

In the year 2013, the German scientists introduced the concept of “Industry 4.0” (Kagermann et al. in Securing the future of German manufacturing industry recommendations for implementing the strategic initiative INDUSTRIE 4.0. Germany: Federal Ministry of education and research. Final Report of the Industrial 4.0 Working Group, 2012). They believed that in the next 10 years, the industrialization based on the cyber-physical system (CPS) will make the society enter the fourth revolution dominated by intelligent manufacturing. “Industry 4.0” will make the manufacturing process more flexible and strong, develop new business models, and promote the formation of a new cyber-physical system platform. The core of the “Industry 4.0” strategy is to realize the real-time connection, mutual recognition, and effective communication between people, equipment, and products through CPS network, to build a highly flexible personalized and digital intelligent manufacturing mode.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87878-8_12
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-87878-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11
Fig. 12.12
Fig. 12.13
Fig. 12.14

References

  1. Kagermann H, Wahlster W, Helbig J (2012) Securing the future of German manufacturing industry recommendations for implementing the strategic initiative INDUSTRIE 4.0. Federal Ministry of education and research Final report of the Industrial 4.0 Working Group, Germany

    Google Scholar 

  2. Lee EA (2006) Cyber-physical systems—are computing foundations adequate? Position paper for NSF workshop on cyber physical systems: research motivation, techniques and roadmap

    Google Scholar 

  3. Rajkumar R, Lee I (2010) Cyber-physical systems: the next computing revolution. Proceedings of the design automation conference. pp 731–736

    Google Scholar 

  4. Harrison R, Vera D, Ahmad B (2016) Engineering methods and tools for cyber–physical automation systems. IEEE Proc 104(5):973–985

    Google Scholar 

  5. Sztipanovits J, Karsai G, et al (2012) Toward a science of cyber–physical system integration. Proc IEEE 100(1)

    Google Scholar 

  6. Leitao P, Colombo AW, Karnouskos S (2016) Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput Ind 81:11–25

    Google Scholar 

  7. Groover MP (2015) Automation, production systems, and computer-integrated manufacturing, 4th edn. Pearson

    Google Scholar 

  8. Liu C, Xu X (2017) Cyber-physical machine tool—the era of machine tool 4.0. Procedia CIRP 63:70–75

    Google Scholar 

  9. Ghimire S, Luis-Ferreira F, Nodehi T, et al (2017) IoT based situational awareness framework for real-time project management. Int J Comput Integr Manuf 30(1):74–83

    Google Scholar 

  10. Zhong RY, Wang L, Xu X (2017) An IoT-enabled real-time machine status monitoring approach for cloud manufacturing. Procedia CIRP 63:709–714

    Google Scholar 

  11. Zuo Y, Tao F, Nee AYC (2017) An internet of things and cloud-based approach for energy consumption evaluation and analysis for a product. Int J Comput Integr Manuf. 1–12

    Google Scholar 

  12. Cai Y, Starly B, Cohen P, et al (2017) Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. 10:1031–1042

    Google Scholar 

  13. Zheng M, Ming X (2017) Construction of cyber-physical system–integrated smart manufacturing workshops: a case study in automobile industry. Adv Mech Eng 9(10):168781401773324

    Google Scholar 

  14. Zhang J, Deng C, et al (2021) Development of an edge computing-based cyber-physical machine tool. Robot Comput Integr Manuf 67:102042

    Google Scholar 

  15. Luo W, Hu T, Ye Y, Zhang C, Wei Y (2020) A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Robot Comput Integr Manuf 65:101974

    Google Scholar 

  16. Xie Y, Lian K (2021) Digital twin for cutting tool: modeling, application and service strategy. J Manuf Syst 58(B):305–312

    Google Scholar 

  17. Morgan J, O’Donnell GE (2015) Cyber physical process monitoring systems. J Int Manuf 26(6):1–12

    Google Scholar 

  18. Caggiano A, Segreto T, Teti R (2016) Cloud manufacturing framework for smart monitoring of machining. Procedia CIRP 55:248–253

    Google Scholar 

  19. Herwan J, Kano S, et al (2018) Cyber-physical system architecture for machining production line. In: IEEE industrial cyber-physical systems (ICPS). St. Petersburg, Russia

    Google Scholar 

  20. Zhu KP, Zhang Y (2018) A cyber-physical production system framework of smart CNC machining monitoring system. IEEE/ASME Trans Mechatron 23(6):2579–2586

    Google Scholar 

  21. Teti R, Jemielniak K, O’Donnel G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739

    Google Scholar 

  22. Deshayes L, Welsch L, Donmez A, Ivester R, Gilsinn D, Rhorer R, Whitenton E, Potra F (2005) Smart machining systems: issues and research trends. The 12th CIRP life cycle engineering seminar, Grenoble, France, pp 3–5

    Google Scholar 

  23. Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann Manuf Technol 64(2):749–772

    Google Scholar 

  24. Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Ann Manuf Technol 63(2):585–605

    Google Scholar 

  25. Lee J, Lapira E, Bagheri B, Kao HA (2012) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41

    Google Scholar 

  26. Monostori L, Kadar B, Bauernhansl T, Kondoh S, Kumara S, Reinhart G, Sauer O, Schuh G, Sihn W, Ueda K (2016) Cyber-physical systems in manufacturing. CIRP Ann Manuf Technol 65(2):621–641

    Google Scholar 

  27. Foundations for Innovation in Cyber-Physical Systems (2014) National Institute of Standards and Technology (NIST), Gaithersburg

    Google Scholar 

  28. Lv C, Liu Y, Hu X, et al (2018) Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain. IEEE Trans Cybern 48(8):2357–2367

    Google Scholar 

  29. Lv C, Xing Y, Zhang J, Na X, et al (2018) Levenberg-Marquardt backpropagation training of multilayer neural networks for state estimation of a safety critical cyber-physical system. IEEE Trans Industr Inform 14(8):3436–3446

    Google Scholar 

  30. Mourtzis D, Vlachou E, Milas N, Xanthopoulos N (2016) A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. Procedia CIRP 41:655–660

    Google Scholar 

  31. Tapoglou N, Mehnen J, Vlachou A, Doukas M, Milas N, Mourtzis D (2015) Cloud-based platform for optimal machining parameter selection based on function blocks and real-time monitoring. J Manuf Sci Eng 137(4):040909

    Google Scholar 

  32. Li X, Djordjevich A, Venuvinod PK (2000) Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring. IEEE Trans Ind Electron 47(3):697–702

    Google Scholar 

  33. Hung CW, Lu MC (2012) Model development for tool wear effect on AE signal generation in micro-milling. Int J Adv Manuf Technol 66(9–12):1845–1858

    Google Scholar 

  34. Szydłowski M, Powałka B, Matuszak M, et al (2016) Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance. Prec Eng 44:236–244

    Google Scholar 

  35. Zhu KP, Yu XL (2017) The monitoring of micro milling tool wear conditions by wear area estimation. Mech Syst Signal Process 93:80–91

    Google Scholar 

  36. Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4–5):672–693

    Google Scholar 

  37. Wang W, Jianu OA (2010) A smart sensing unit for vibration measurement and monitoring. IEEE/ASME Trans Mechatron 15(1):70–78

    Google Scholar 

  38. Rizal M, Ghani JA, Nuawi MZ, Haron CHC (2015) Development and testing of an integrated rotating dynamometer on tool holder for milling process. Mech Syst Signal Process 52–53:559–576

    Google Scholar 

  39. Mahajan A, Wang K, Ray PK (2001) Multisensor integration and fusion model that uses a fuzzy inference system. IEEE/ASME Trans Mech 6(2):188–196

    Google Scholar 

  40. Malekian M, Park SS, Jun MBG (2009) Tool wear monitoring of micro-milling operations. J Mat Process Technol 209(10):4903–4914

    Google Scholar 

  41. Wang J, Xie J, Zhao R, Mao K, Zhang L (2016) A new probabilistic kernel factor analysis for multisensory data fusion: application to tool condition monitoring. IEEE Trans Instrum Meas 65(11):2527–2537

    Google Scholar 

  42. Ompusunggu AP, Papy JM, Vandenplas S (2015) Kalman-filtering-based prognostics for automatic transmission clutches. IEEE/ASME Trans Mech 21(1):419–430

    Google Scholar 

  43. Zhu KP, Liu T (2018) Online tool wear monitoring via hidden Semi-Markov model with dependent durations. IEEE Trans Ind Inform 14(1):69–78

    Google Scholar 

  44. Geramifard O, Xu JX, Zhou JH, Li X (2012) Multimodal hidden Markov model-based approach for tool wear monitoring. IEEE Trans Ind Electron 61(6):2900–2911

    Google Scholar 

  45. Xia M, Li T, Xu L, Liu L, Silva CWD (2018) Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans Mech 23(1):101–110

    Google Scholar 

  46. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  47. Wang P, Yan AR, Gao R (2017) Visualization and deep recognition for system fault classification. J Manuf Syst 44:310–316

    Google Scholar 

  48. Droniou A, Ivaldi S, Sigaud O (2015) Deep unsupervised network for multimodal perception, representation and classification. Robot Auton Syst 71:83–98

    Google Scholar 

  49. Sun W, Shao S, Zhao R, Yan R, Zhang X, Chen X (2016) A sparse auto-encoder-based deep network approach for induction motor faults classification. Measurement 89:171–178

    Google Scholar 

  50. Monostori L (2014) Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17:9–13

    Google Scholar 

  51. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23

    Google Scholar 

  52. Zhu KP, Zhang Y (2017) Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Mach Tools Manuf 118–119:37–48

    Google Scholar 

  53. Morgan J, O’Donnell GE (2017) Multi-sensor process analysis and performance characterization in CNC turning-a cyber physical system approach. Int J Adv Manuf Technol 92(1–4):855–868

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunpeng Zhu .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, K. (2022). The Cyber-Physical Production System of Smart Machining System. In: Smart Machining Systems. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-87878-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87878-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87877-1

  • Online ISBN: 978-3-030-87878-8

  • eBook Packages: EngineeringEngineering (R0)