Skip to main content

Abstract

Predicting the magnitude of earthquakes is of vital importance and, at the same time, of extreme complexity, where each attribute contributes differently in the process, even introducing noise. Preprocessing using attribute selection techniques helps to alleviate this drawback. In this work, this is demonstrated through an extensive comparison of 47 years of data from the Northern California Earthquake Data Center, where a wide range of feature selection algorithms are applied composed by different search, like population, local and ranking search based; and evaluators, like Correlations, consistency and distance metrics. After that, prediction algorithms will allow to compare the result with and without the application of feature selection, showing that the number of existing attributes can be reduced by 80%, improving metrics of the original, ensuring that the use of attribute selection in this type of problem is quite promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asencio-Cortés, G., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J.: A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction. Knowl. Based Syst. 101, 15–30 (2016)

    Article  Google Scholar 

  2. Dwi Prayogo, R., Ikhsan, N.: Attribute selection effect on tree-based classifiers for letter recognition. In: 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), pp. 13–18 (2020)

    Google Scholar 

  3. Sugianela, Y., Ahmad, T.: Pearson correlation attribute evaluation-based feature selection for intrusion detection system. In: 2020 International Conference on Smart Technology and Applications (ICoSTA), pp. 1–5 (2020)

    Google Scholar 

  4. Han, W., Gan, Y., Chen, S., Wang, X.: Study on earthquake prediction model based on traffic disaster data. In: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), pp. 331–334 (2020)

    Google Scholar 

  5. Banna, M.H.A., et al.: Attention-based bi-directional long-short term memory network for earthquake prediction. IEEE Access 9, 56589–56603 (2021)

    Article  Google Scholar 

  6. Hashimoto, T., Shepard, D., Kuboyama, T., Shin, K.: Event detection from millions of tweets related to the great east Japan earthquake using feature selection technique. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 7–12 (2015)

    Google Scholar 

  7. Hall, M.: Correlation-based feature selection for machine learning, vol. 19. Department of Computer Science (2000)

    Google Scholar 

  8. Urbanowicz, R.J., Meeker, M., La Cava, W., Olson, R.S., Moore, J.H.: Relief-based feature selection: introduction and review. J. Biomed. Inform. 85, 189–203 (2018)

    Article  Google Scholar 

  9. Liu, H., Setiono, R.: A Probabilistic Approach to Feature Selection - A Filter Solution, pp. 319–327. Morgan Kaufmann (1996)

    Google Scholar 

  10. Saikhu, A., Arifin, A.Z., Fatichah, C.: Correlation and symmetrical uncertainty-based feature selection for multivariate time series classification. Int. J. Intell. Eng. Syst. 12, 129–137 (2019)

    Google Scholar 

  11. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. Comput. Intell. Mag. 1, 28–39 (2006)

    Article  Google Scholar 

  12. Ma, X.X., Wang, J.S.: Optimized parameter settings of binary bat algorithm for solving function optimization problems. J. Electr. Comput. Eng. 2018, 3847951 (2018)

    MathSciNet  Google Scholar 

  13. Teodorović, D.: Bee colony optimization (BCO). In: Lim C.P., Jain L.C., Dehuri S. (eds.) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol. 248. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_3

  14. Farreny, H., Prade, H.: Heuristics—intelligent search strategies for computer problem solving, by Judea Pearl. (Reading, MA: Addison-Wesley, 1984). Int. J. Intell. Syst. 1, 48 (1986)

    Google Scholar 

  15. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, ICNN 1995, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  17. Martí, R., Corberán, A., Peiró, J.: Scatter Search, pp. 1–24. Springer, Cham (2016). https://doi.org/10.1007/978-1-4615-0337-8

  18. Glover, F.: Tabu search—part i. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  19. Mackay, D.J.: Introduction to Gaussian Processes (1998)

    Google Scholar 

  20. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    MATH  Google Scholar 

  21. Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

    Google Scholar 

  22. Shevade, S., Keerthi, S., Bhattacharyya, C., Murthy, K.: Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Netw. 11, 1188–1193 (1999)

    Article  Google Scholar 

  23. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  24. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  25. Asencio-Cortés, G., Morales-Esteban, A., Shang, X., Martínez-Álvarez, F.: Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure. Comput. Geosci. 115, 198–210 (2018)

    Article  Google Scholar 

  26. Knuth, D.: ANSS composite earthquake catalog through the Northern California earthquake data center (NCEDC). UC Berkeley Seismological Laboratory (2014). Accessed 15 April 2017

    Google Scholar 

  27. Frank, E., et al.: Weka-a machine learning workbench for data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1269-1277. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-09823-4_66

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Roiz-Pagador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roiz-Pagador, J., Chacon-Maldonado, A., Ruiz, R., Asencio-Cortes, G. (2022). Earthquake Prediction in California Using Feature Selection Techniques. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_69

Download citation

Publish with us

Policies and ethics