Skip to main content

Predicting Landslides with Machine Learning Methods Using Temporal Sequences of Meteorological Data

  • Conference paper
  • First Online:
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) (SOCO 2021)

Abstract

In recent years, several studies have been carried out to predict landslides by applying different methodologies and techniques. The present work proposes the use of data generated by meteorological stations to predict landslides in certain areas. These data are accumulated in certain periods of time looking for a persistence of the meteorological conditions and using machine learning (ML) techniques such as support vector machine (SVM). To validate the proposal, an area sensitive to these phenomena that is monitored by several weather stations was selected for the experimentation. Data on precipitation, temperature, wind, solar radiation and relative humidity were obtained for 36 years between 1979 and 2014, using a time windows for the predominant precipitation variable. A precision accuracy of 0.99 was obtained using the meteorological data to feed a SVM classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madawala, C.N., Kumara, B.T.G.S., Indrathilaka, L.: Novel machine learning ensemble approach for landslide prediction. In: Proceedings of the IEEE Int. Res. Conf. Smart Comput. Syst. Eng. SCSE 2019, pp. 78–84 (2019). https://doi.org/10.23919/SCSE.2019.8842762

  2. Chen, W., Chen, X., Peng, J., Panahi, M., Lee, S.: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci. Front. 12(1), 93–107 (2021). https://doi.org/10.1016/j.gsf.2020.07.012

    Article  Google Scholar 

  3. Ye, C., et al.: Landslide detection of hyperspectral remote sensing data based on deep learning with constrains. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(12), 5047–5060 (2019). https://doi.org/10.1109/JSTARS.2019.2951725

    Article  Google Scholar 

  4. Fang, Z., Wang, Y., Peng, L., Hong, H.: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 35(2), 321–347 (2021). https://doi.org/10.1080/13658816.2020.1808897

    Article  Google Scholar 

  5. Dou, J., et al.: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17(3), 641–658 (2019). https://doi.org/10.1007/s10346-019-01286-5

    Article  MathSciNet  Google Scholar 

  6. Lian, C., Zeng, Z., Wang, X., Yao, W., Su, Y., Tang, H.: Landslide displacement interval prediction using lower upper bound estimation method with pre-trained random vector functional link network initialization. Neural Netw. 130, 286–296 (2020). https://doi.org/10.1016/j.neunet.2020.07.020

    Article  Google Scholar 

  7. Hong, H., et al.: Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Nat. Hazards 96(1), 173–212 (2018). https://doi.org/10.1007/s11069-018-3536-0

    Article  Google Scholar 

  8. Rodríguez, B.G., Meneses, J.S., Garcia-Rodriguez, J.: Implementation of a low-cost rain gauge with Arduino and Thingspeak. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 770–779. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_74

    Chapter  Google Scholar 

  9. Bangyu, W., Qiu, W., Jia, J., Liu, N.: Landslide Susceptibility Modeling Using Bagging-Based Positive-Unlabeled Learning. IEEE Geosci. Remote Sens. Lett. 18(5), 766–770 (2021). https://doi.org/10.1109/LGRS.2020.2989497

    Article  Google Scholar 

  10. Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A., Mansor, S.: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat. Hazards Risk 9(1), 49–69 (2017). https://doi.org/10.1080/19475705.2017.1407368

    Article  Google Scholar 

  11. Bui, D., et al.: New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed. Forests 10(9), 743 (2019). https://doi.org/10.3390/f10090743

    Article  Google Scholar 

  12. Ebrahimi-Khusfi, Z., Taghizadeh-Mehrjardi, R., Mirakbari, M.: Evaluation of machine learning models for predicting the temporal variations of dust storm index in arid regions of Iran. Atmos. Pollut. Res. 12(1), 134–147 (2021). https://doi.org/10.1016/j.apr.2020.08.029

    Article  Google Scholar 

  13. Luo, X., et al.: Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PLoS ONE 14(4), 1–18 (2019). https://doi.org/10.1371/journal.pone.0215134

    Article  Google Scholar 

  14. Piralilou, S.T., et al.: Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sens. 11(21), 2575 (2019). https://doi.org/10.3390/rs11212575

    Article  Google Scholar 

  15. Highway, C.: Landslide Susceptibility Assessment Using Integrated Deep Learning Algorithm along the China-Nepal Highway (2018). https://doi.org/10.3390/s18124436

    Article  Google Scholar 

  16. Yu, C., Chen, J.: Landslide susceptibility mapping using the slope unit for southeastern Helong City, Jilin Province, China: a comparison of ANN and SVM. Symmetry (Basel) 12(6), 1047 (2020). https://doi.org/10.3390/sym12061047

    Article  Google Scholar 

  17. Zhang, L., Shi, B., Zhu, H., Yu, X.B., Han, H., Fan, X.: PSO-SVM-based deep displacement prediction of Majiagou landslide considering the deformation hysteresis effect. Landslides 18(1), 179–193 (2020). https://doi.org/10.1007/s10346-020-01426-2

    Article  Google Scholar 

  18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newslett. 11(1), 10–18 (2009). https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  19. Abbaszadeh Shahri, A., Maghsoudi Moud, F.: Landslide susceptibility mapping using hybridized block modular intelligence model. Bull. Eng. Geol. Env. 80(1), 267–284 (2020). https://doi.org/10.1007/s10064-020-01922-8

    Article  Google Scholar 

  20. Deslizamientos, S.A., La, E.N., Aloag, V.Í.A.: Susceptibility to landslides on the Aloag – Santo domingo, December 2020 (2021). https://doi.org/10.24133/geoespacial.v17i2.1571

  21. Son, J., Suh, J., Park, H.-D.: GIS-based landslide susceptibility assessment in Seoul, South Korea, applying the radius of influence to frequency ratio analysis. Environ. Earth Sci. 75(4), 1–16 (2016). https://doi.org/10.1007/s12665-015-5149-1

    Article  Google Scholar 

  22. Chang, Z., et al.: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models. Remote Sens. 12(3), 502 (2020). https://doi.org/10.3390/rs12030502

    Article  Google Scholar 

  23. Harmouzi, H., Nefeslioglu, H.A., Rouai, M., Sezer, E.A., Dekayir, A., Gokceoglu, C.: Landslide susceptibility mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial neural networks (ANN). Arab. J. Geosci. 12(22), 1–18 (2019). https://doi.org/10.1007/s12517-019-4892-0

    Article  Google Scholar 

Download references

Acknowledgement

I would like to express my gratitude to the Central University of Ecuador and FIGEMPA, which in the framework of the inter-institutional agreement with the University of Alicante, made this research work possible.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez, B.G., Salvador-Meneses, J., Garcia-Rodriguez, J. (2022). Predicting Landslides with Machine Learning Methods Using Temporal Sequences of Meteorological Data. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_33

Download citation

Publish with us

Policies and ethics