Skip to main content

Abstract

The ever-increasing complexity of robots usually implies a parallel increase in the number of failures of such systems. Due to this, monitoring and anomaly detection plays a key role in the implementation of smart robotics and soft computing can significantly contribute to this task. In keeping with this idea, recently proposed Hybrid Unsupervised Exploratory Plots (HUEPs) are proposed in present paper to monitor the performance and improve anomaly detection in a component-based robotic software. Furthermore, the original HUEP formulation is extended by means of density-based clustering. Such clustering techniques are validated in conjunction with unsupervised exploratory projection ones. This novel proposal is validated on an open and up-to-date dataset containing information about the software performance of a collaborative robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jayaratne, M., de Silva, D., Alahakoon, D.: Unsupervised machine learning based scalable fusion for active perception. IEEE Trans. Autom. Sci. Eng. 16(4), 1653–1663 (2019). https://doi.org/10.1109/TASE.2019.2910508

    Article  Google Scholar 

  2. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013). https://doi.org/10.1177/0278364913495721

    Article  Google Scholar 

  3. Alsamhi, S.H., Ma, O., Ansari, M.S.: Survey on artificial intelligence based techniques for emerging robotic communication. Telecommun. Syst. 72(3), 483–503 (2019). https://doi.org/10.1007/s11235-019-00561-z

    Article  Google Scholar 

  4. Zhao, D., Ni, W., Zhu, Q.: A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing 140, 8–18 (2014). https://doi.org/10.1016/j.neucom.2014.03.041

    Article  Google Scholar 

  5. Xiao, B., Yin, S.: Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics. IEEE Trans. Industr. Inf. 15(2), 689–698 (2019). https://doi.org/10.1109/TII.2018.2809514

    Article  Google Scholar 

  6. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE IoT J. 5(4), 2315–2322 (2018). https://doi.org/10.1109/JIOT.2017.2737479

    Article  Google Scholar 

  7. Wienke, J., Meyer zu Borgsen, S., Wrede, S.: A data set for fault detection research on component-based robotic systems. In: Alboul, L., Damian, D., Aitken, J. (eds.) Towards Autonomous Robotic Systems, TAROS 2016. Lecture Notes in Computer Science, vol. 9716. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-40379-3_35

  8. Wienke, J., Wrede, S.: A fault detection data set for performance bugs in component-based robotic systems (2016). https://doi.org/10.4119/unibi/2900911

  9. Wienke, J., Wrede, S.: Autonomous fault detection for performance bugs in component-based robotic systems. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3291–3297. IEEE (2016). https://doi.org/10.1109/IROS.2016.7759507

  10. Wienke, J., Wrede, S.: Continuous regression testing for component resource utilization. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 273–280. IEEE (2016)

    Google Scholar 

  11. Herrero, A., Jimenez, A., Bayraktar, S.: Hybrid unsupervised exploratory plots: a case study of analysing foreign direct investment. Complexity, 1–14 (2019). https://doi.org/10.1155/2019/6271017

  12. Kriegel, H.-P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. WIREs Data Min. Knowl. Disc. 1(3), 231–240 (2011). https://doi.org/10.1002/widm.30

    Article  Google Scholar 

  13. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996). http://dl.acm.org/citation.cfm?id=3001460.3001507

  14. Wienke, J., Wrede, S.: A middleware for collaborative research in experimental robotics. In: IEEE/SICE International Symposium on System Integration (SII) 2011, pp. 1183–1190 (2011). https://doi.org/10.1109/SII.2011.6147617

  15. Basurto, N., Herrero, Á.: Data selection to improve anomaly detection in a component-based robot. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E. (eds.) SOCO 2019. AISC, vol. 950, pp. 241–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20055-8_23

  16. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 19:1-19:21 (2017). https://doi.org/10.1145/3068335

    Article  MathSciNet  Google Scholar 

  17. Herrero, Á., Corchado, E., Sáiz, J.M.: MOVICAB-IDS: visual analysis of network traffic data streams for intrusion detection. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1424–1433. Springer, Heidelberg (2006). https://doi.org/10.1007/11875581_169

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuño Basurto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basurto, N., Cambra, C., Herrero, Á. (2022). Visually Monitoring the Performance of a Component-Based Robot. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_11

Download citation

Publish with us

Policies and ethics