Skip to main content

Multi-agent Reinforcement Learning for Decentralized Stable Matching

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13023))

Included in the following conference series:

Abstract

In the real world, people/entities usually find matches independently and autonomously, such as finding jobs, partners, roommates, etc. It is possible that this search for matches starts with no initial knowledge of the environment. We propose the use of a multi-agent reinforcement learning (MARL) paradigm for a spatially formulated decentralized two-sided matching market with independent and autonomous agents. Having autonomous agents acting independently makes our environment very dynamic and uncertain. Moreover, agents lack the knowledge of preferences of other agents and have to explore the environment and interact with other agents to discover their own preferences through noisy rewards. We think such a setting better approximates the real world and we study the usefulness of our MARL approach for it. Along with conventional stable matching case where agents have strictly ordered preferences, we check the applicability of our approach for stable matching with incomplete lists and ties. We investigate our results for stability, level of instability (for unstable results), and fairness. Our MARL approach mostly yields stable and fair outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachrach, Y., et al.: Negotiating team formation using deep reinforcement learning (2018)

    Google Scholar 

  2. Chalkiadakis, G., Boutilier, C.: Bayesian reinforcement learning for coalition formation under uncertainty. In: Proceeding of AAMAS 2004, pp. 1090–1097 (2004)

    Google Scholar 

  3. Comola, M., Fafchamps, M.: An experimental study on decentralized networked markets. J. Econ. Behav. Organ. 145, 567–591 (2018)

    Article  Google Scholar 

  4. Diamantoudi, E., Miyagawa, E., Xue, L.: Decentralized matching: the role of commitment. Games Econ. Behav. 92, 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  5. Echenique, F., Yariv, L.: An experimental study of decentralized matching (2012)

    Google Scholar 

  6. Eriksson, K., Häggström, O.: Instability of matchings in decentralized markets with various preference structures. Int. J. Game Theor. 36(3–4), 409–420 (2008)

    Article  MathSciNet  Google Scholar 

  7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 69(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  8. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J. Comput. 16(1), 111–128 (1987)

    Article  MathSciNet  Google Scholar 

  9. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)

    Google Scholar 

  10. Haeringer, G., Wooders, M.: Decentralized job matching. Int. J. Game Theor. 40(1), 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  11. Hoepman, J.H.: Simple distributed weighted matchings. arXiv cs/0410047 (2004)

    Google Scholar 

  12. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–272 (1994)

    Article  MathSciNet  Google Scholar 

  13. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the optimal stable marriage. J. ACM (JACM) 34(3), 532–543 (1987)

    Article  MathSciNet  Google Scholar 

  14. Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its variants. In: International Conference on Informatics Education and Research for Knowledge-Circulating Society, pp. 131–136. IEEE Computer Society (January 2008)

    Google Scholar 

  15. Khan, A., et al.: Efficient approximation algorithms for weighted b-matching. SIAM J. Sci. Comput. 38(5), S593–S619 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

    Google Scholar 

  18. Matthews, T., Ramchurn, S.D., Chalkiadakis, G.: Competing with humans at fantasy football: Team formation in large partially-observable domains. In: Twenty-Sixth AAAI Conference on Artificial Intelligence, aaai.org (2012)

    Google Scholar 

  19. Niederle, M., Roth, A.E.: Making markets thick: How norms governing exploding offers affect market performance. preprint (2006)

    Google Scholar 

  20. Niederle, M., Yariv, L.: Matching through decentralized markets. Stanford University, Discussion Paper (2007)

    Google Scholar 

  21. Niederle, M., Yariv, L.: Decentralized matching with aligned preferences. Technical report, National Bureau of Economic Research (2009)

    Google Scholar 

  22. Pais, J., Pintér, A., Veszteg, R.F.: Decentralized matching markets: a laboratory experiment (2012)

    Google Scholar 

  23. Pais, J., Pintér, Á., Veszteg, R.F.: Decentralized matching markets with (out) frictions: a laboratory experiment. Exp. Econ. 1–28 (2017)

    Google Scholar 

  24. Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Stability and optimality in matching problems with weighted preferences. In: Filipe, J., Fred, A. (eds.) ICAART 2011. CCIS, vol. 271, pp. 319–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29966-7_21

    Chapter  Google Scholar 

  25. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 259–269. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_24

    Chapter  Google Scholar 

  26. Roth, A.E.: A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the United Kingdom. Am. Econ. Rev. 415–440 (1991)

    Google Scholar 

  27. Roth, A.E., Xing, X.: Turnaround time and bottlenecks in market clearing: decentralized matching in the market for clinical psychologists. J. Political Econ. 105(2), 284–329 (1997)

    Article  Google Scholar 

  28. Rummery, G.A., Niranjan, M.: On-Line Q-Learning Using Connectionist Systems, vol. 37. University of Cambridge, Department of Engineering England (1994)

    Google Scholar 

  29. Satterthwaite, M., Shneyerov, A.: Dynamic matching, two-sided incomplete information, and participation costs: existence and convergence to perfect competition. Econometrica 75(1), 155–200 (2007)

    Article  MathSciNet  Google Scholar 

  30. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  31. Ünver, M.U.: On the survival of some unstable two-sided matching mechanisms. Int. J. Game Theor. 33(2), 239–254 (2005)

    Article  MathSciNet  Google Scholar 

  32. Viet, H.H., Trang, L.H., Lee, S., Chung, T.: A bidirectional local search for the stable marriage problem. In: 2016 International Conference on Advanced Computing and Applications (ACOMP), pp. 18–24. ieeexplore.ieee.org (November 2016)

    Google Scholar 

  33. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 335–348. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30186-8_24

    Chapter  MATH  Google Scholar 

  34. Zhao, D., Wang, H., Shao, K., Zhu, Y.: Deep reinforcement learning with experience replay based on SARSA. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshitija Taywade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taywade, K., Goldsmith, J., Harrison, B. (2021). Multi-agent Reinforcement Learning for Decentralized Stable Matching. In: Fotakis, D., Ríos Insua, D. (eds) Algorithmic Decision Theory. ADT 2021. Lecture Notes in Computer Science(), vol 13023. Springer, Cham. https://doi.org/10.1007/978-3-030-87756-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87756-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87755-2

  • Online ISBN: 978-3-030-87756-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics