Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)
Bishop, C.M.: Novelty detection and neural network validation. IEE Proc.-Vis. Image Sig. Process. 141(4), 217–222 (1994)
CrossRef
Google Scholar
Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Google Scholar
Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vision 69(3), 335–351 (2006). https://doi.org/10.1007/s11263-006-7533-5
CrossRef
Google Scholar
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Google Scholar
DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)
Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)
CrossRef
Google Scholar
Erdil, E., Chaitanya, K., Karani, N., Konukoglu, E.: Task-agnostic out-of-distribution detection using kernel density estimation. arXiv preprint arXiv:2006.10712 (2020). https://arxiv.org/pdf/2006.10712.pdf
Erdil, E., Yildirim, S., Tasdizen, T., Cetin, M.: Pseudo-marginal MCMC sampling for image segmentation using nonparametric shape priors. IEEE Trans. Image Process. 28(11), 5702–5715 (2019)
MathSciNet
CrossRef
Google Scholar
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. JMLR. org (2017)
Google Scholar
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of International Conference on Learning Representations (2017)
Google Scholar
Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: International Conference on Learning Representations (2018)
Google Scholar
Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. In: Advances in Neural Information Processing Systems, pp. 15637–15648 (2019)
Google Scholar
Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960 (2020)
Google Scholar
Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)
CrossRef
Google Scholar
Kim, J., Çetin, M., Willsky, A.S.: Nonparametric shape priors for active contour-based image segmentation. Signal Process. 87(12), 3021–3044 (2007)
CrossRef
Google Scholar
Kim, K.H., Shim, S., Lim, Y., Jeon, J., Choi, J., Kim, B., Yoon, A.S.: Rapp: novelty detection with reconstruction along projection pathway. In: International Conference on Learning Representations (2020)
Google Scholar
Kohl, S.A., et al.: A probabilistic U-Net for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034 (2018)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)
Google Scholar
Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: ICLR 2018 (2018)
Google Scholar
Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems, pp. 7167–7177 (2018)
Google Scholar
Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)
Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Google Scholar
Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: International Conference on Learning Representations (2018)
Google Scholar
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, Hoboken (2015)
CrossRef
Google Scholar
Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boco Raton (1986)
MATH
Google Scholar
Van Essen, D.C., et al.: The WU-MINN human connectome project: an overview. Neuroimage 80, 62–79 (2013)
CrossRef
Google Scholar
Venkatakrishnan, A.R., Kim, S.T., Eisawy, R., Pfister, F., Navab, N.: Self-supervised out-of-distribution detection in brain CT scans. arXiv preprint arXiv:2011.05428 (2020)
Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 560–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_34
CrossRef
Google Scholar
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)
Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: TurkerGaze: crowdsourcing saliency with webcam based eye tracking. arXiv preprint arXiv:1504.06755 (2015)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)
Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum classifier discrepancy. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9518–9526 (2019)
Google Scholar