Alexander, D.C., et al.: Image quality transfer and applications in diffusion MRI. Neuroimage 152, 283–298 (2017)
CrossRef
Google Scholar
Bahrami, K., Shi, F., Rekik, I., Gao, Y., Shen, D.: 7T-guided super-resolution of 3T MRI. Med. Phys. 44(5), 1661–1677 (2017)
CrossRef
Google Scholar
Choi, Y., et al.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR, pp. 8789–8797 (2018)
Google Scholar
Glocker, B., Robinson, R., Castro, D.C., Dou, Q., Konukoglu, E.: Machine learning with multi-site imaging data: an empirical study on the impact of scanner effects. arXiv preprint arXiv:1910.04597 (2019)
Goodfellow, I.: Nips 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)
Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3
CrossRef
Google Scholar
Li, H., et al.: DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 795–803. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_87
CrossRef
Google Scholar
Lin, H., et al.: Deep learning for low-field to high-field MR: image quality transfer with probabilistic decimation simulator. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) MLMIR 2019. LNCS, vol. 11905, pp. 58–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_6
CrossRef
Google Scholar
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
Google Scholar
Lysandropoulos, A.P., et al.: Quantifying brain volumes for multiple sclerosis patients follow-up in clinical practice-comparison of 1.5 and 3 tesla magnetic resonance imaging. Brain Behav. 6(2), e00422 (2016)
CrossRef
Google Scholar
Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29
CrossRef
Google Scholar
Park, J., Hwang, D., Kim, K.Y., Kang, S.K., Kim, Y.K., Lee, J.S.: Computed tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63(14), 145011 (2018)
CrossRef
Google Scholar
Shi, W., et al.: Cardiac image super-resolution with global correspondence using multi-atlas PatchMatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_2
CrossRef
Google Scholar
Siddharth, N., et al.: Learning disentangled representations with semi-supervised deep generative models. In: Advances in Neural Information Processing Systems, pp. 5925–5935 (2017)
Google Scholar
Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70
CrossRef
Google Scholar
Tax, C.M., et al.: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms. Neuroimage 195, 285–299 (2019)
CrossRef
Google Scholar
Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images-a comparison of CycleGAN and unit. arXiv preprint arXiv:1806.07777 (2018)
Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29
CrossRef
Google Scholar
Yurt, M., Dar, S.U.H., Erdem, A., Erdem, E., Çukur, T.: mustGAN: multi-stream generative adversarial networks for MR image synthesis. arXiv preprint arXiv:1909.11504 (2019)
Zhu, J.Y., et al.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: CVPR, pp. 2223–2232 (2017)
Google Scholar