Skip to main content

Abstract

The fetal cortical plate undergoes drastic morphological changes throughout early in utero development that can be observed using magnetic resonance (MR) imaging. An accurate MR image segmentation, and more importantly a topologically correct delineation of the cortical gray matter, is a key baseline to perform further quantitative analysis of brain development. In this paper, we propose for the first time the integration of a topological constraint, as an additional loss function, to enhance the morphological consistency of a deep learning-based segmentation of the fetal cortical plate. We quantitatively evaluate our method on 18 fetal brain atlases ranging from 21 to 38 weeks of gestation, showing the significant benefits of our method through all gestational ages as compared to a baseline method. Furthermore, qualitative evaluation by three different experts on 26 clinical MRIs evidences the out-performance of our method independently of the MR reconstruction quality. Finally, as a proof of concept, 3 fetal brains with abnormal cortical development were assessed. The proposed topologically-constrained framework outperforms the baseline, thus, suggesting its additional value to also depict pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011). https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  Google Scholar 

  2. Benkarim, O.M., et al.: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly. NeuroImage Clin. 18, 103–114 (2018). https://doi.org/10.1016/j.nicl.2018.01.006

    Article  Google Scholar 

  3. Byrne, N., Clough, J.R., Montana, G., King, A.P.: A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_1

    Chapter  Google Scholar 

  4. Caldairou, B., et al.: Segmentation of the cortex in fetal MRI using a topological model. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, pp. 2045–2048. IEEE, March 2011. https://doi.org/10.1109/ISBI.2011.5872814

  5. Caldairou, B., et al.: Data-driven cortex segmentation in reconstructed fetal MRI by using structural constraints. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 503–511. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23672-3_61

    Chapter  Google Scholar 

  6. Clouchoux, C., et al.: Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct. Funct. 217(1), 127–139 (2012). https://doi.org/10.1007/s00429-011-0325-x

    Article  Google Scholar 

  7. Deman, P., et al.: meribach/mevislabFetalMRI: MEVISLAB MIAL super-resolution reconstruction of fetal brain MRI v1.0 (2020). https://doi.org/10.5281/zenodo.3878564

  8. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  9. Dou, H., et al.: A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI (2020). arXiv: 2004.12847

  10. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 206 (2020). https://doi.org/10.1016/j.neuroimage.2019.116324

  11. Edelsbrunner, H., et al.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Fetit, A.E., et al.: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling. In: Medical Imaging with Deep Learning (MIDL) (2020). https://openreview.net/forum?id=SgZo6XA-l

  13. Gardner, M.: The Sixth Book of Mathematical Games from Scientific American. WH Freeman, New York (1984)

    Google Scholar 

  14. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 476 (2017). https://doi.org/10.1038/s41598-017-00525-w

    Article  Google Scholar 

  15. Hu, X., et al.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, vol. 32, pp. 5657–5668. Curran Associates, Inc. (2019)

    Google Scholar 

  16. Huttenlocher, D.P., et al.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993). https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  17. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 77–89 (2019). https://doi.org/10.1016/j.mri.2019.05.020

    Article  Google Scholar 

  18. Lenroot, R.K., Giedd, J.N.: Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 30(6), 718–729 (2006). https://doi.org/10.1016/j.neubiorev.2006.06.001

    Article  Google Scholar 

  19. Makropoulos, A., et al.: A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 170, 231–248 (2018). https://doi.org/10.1016/j.neuroimage.2017.06.074

    Article  Google Scholar 

  20. Payette, K., Jakab, A.: Fetal tissue annotation dataset feta, February 2021. https://doi.org/10.5281/zenodo.4541606. https://doi.org/10.5281/zenodo.4541606

  21. Payette, K., et al.: A comparison of automatic multi-tissue segmentation methods of the human fetal brain using the feta dataset (2020). arXiv: 2010.15526

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Tierney, A.L., Nelson, C.A.: Brain development and the role of experience in the early years. Zero Three 30(2), 9–13 (2009)

    Google Scholar 

  24. Tourbier, S., et al.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015). https://doi.org/10.1016/j.neuroimage.2015.06.018

    Article  Google Scholar 

  25. Wright, R., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. NeuroImage 91, 21–32 (2014). https://doi.org/10.1016/j.neuroimage.2014.01.034

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (project 205321-182602). We acknowledge access to the facilities and expertise of the CIBM Center for Biomedical Imaging, a Swiss research center of excellence founded and supported by Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Ecole polytechnique fédérale de Lausanne (EPFL), University of Geneva (UNIGE) and Geneva University Hospitals (HUG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscille de Dumast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B. (2021). Segmentation of the Cortical Plate in Fetal Brain MRI with a Topological Loss. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics